Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(14)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340481

RESUMO

We employed dielectrophoresis to a yeast cell suspension containing amyloid-beta proteins (Aß) in a microfluidic environment. The Aß was separated from the cells and characterized using the gradual dissolution of Aß as a function of the applied dielectrophoretic parameters. We established the gradual dissolution of Aß under specific dielectrophoretic parameters. Further, Aß in the fibril form at the tip of the electrode dissolved at high frequency. This was perhaps due to the conductivity of the suspending medium changing according to the frequency, which resulted in a higher temperature at the tips of the electrodes, and consequently in the breakdown of the hydrogen bonds. However, those shaped as spheroidal monomers experienced a delay in the Aß fibril transformation process. Yeast cells exposed to relatively low temperatures at the base of the electrode did not experience a positive or negative change in viability. The DEP microfluidic platform incorporating the integrated microtip electrode array was able to selectively manipulate the yeast cells and dissolve the Aß to a controlled extent. We demonstrate suitable dielectrophoretic parameters to induce such manipulation, which is highly relevant for Aß-related colloidal microfluidic research and could be applied to Alzheimer's research in the future.


Assuntos
Peptídeos beta-Amiloides/isolamento & purificação , Eletroforese/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Saccharomyces cerevisiae/química , Eletrodos , Eletroforese/instrumentação , Liofilização , Ligação de Hidrogênio , Cinética , Saccharomyces cerevisiae/citologia , Solubilidade , Temperatura
2.
Electrophoresis ; 40(20): 2728-2735, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31219180

RESUMO

This paper presents the development and experimental analysis of a curved microelectrode platform for the DEP deformation of breast cancer cells (MDA-MB-231). The platform is composed of arrays of curved DEP microelectrodes which are patterned onto a glass slide and samples containing MDA-MB-231 cells are pipetted onto the platform's surface. Finite element method is utilised to characterise the electric field gradient and DEP field. The performance of the system is assessed with MDA-MB-231 cells in a low conductivity 1% DMEM suspending medium. We applied sinusoidal wave AC potential at peak to peak voltages of 2, 5, and 10 Vpp at both 10 kHz and 50 MHz. We observed cell blebbing and cell shrinkage and analyzed the percentage of shrinkage of the cells. The experiments demonstrated higher percentage of cell shrinkage when cells are exposed to higher frequency and peak to peak voltage electric field.


Assuntos
Neoplasias da Mama/patologia , Membrana Celular/fisiologia , Forma Celular/fisiologia , Eletroforese/instrumentação , Linhagem Celular Tumoral , Eletroforese/métodos , Feminino , Humanos , Microeletrodos
3.
Biomed Microdevices ; 20(4): 95, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30402766

RESUMO

Cell contact formation, which is the process by which cells are brought into close proximity is an important biotechnological process in cell and molecular biology. Such manipulation is achieved by various means, among which dielectrophoresis (DEP) is widely used due to its simplicity. Here, we show the advantages in the judicious choice of the DEP microelectrode configuration in terms of limiting undesirable effects of dielectric heating on the cells, which could lead to their inactivation or death, as well as the possibility for cell clustering, which is particularly advantageous over the linear cell chain arrangement typically achieved to date with DEP. This study comprises of experimental work as well as mathematical modeling using COMSOL. In particular, we establish the parameters in a capillary-based microfluidic system giving rise to these optimum cell-cell contact configurations, together with the possibility for facilitating other cell manipulations such as spinning and rotation, thus providing useful protocols for application into microfluidic bioparticle manipulation systems for diagnostics, therapeutics or for furthering research in cellular bioelectricity and intercellular interactions.


Assuntos
Técnicas Citológicas/instrumentação , Eletroforese/instrumentação , Dispositivos Lab-On-A-Chip , Sobrevivência Celular , Impedância Elétrica , Eletrodos , Desenho de Equipamento , Temperatura Alta , Leveduras/citologia
4.
Biomicrofluidics ; 12(1): 011503, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29531634

RESUMO

The recent advancement of dielectrophoresis (DEP)-enabled microfluidic platforms is opening new opportunities for potential use in cancer disease diagnostics. DEP is advantageous because of its specificity, low cost, small sample volume requirement, and tuneable property for microfluidic platforms. These intrinsic advantages have made it especially suitable for developing microfluidic cancer diagnostic platforms. This review focuses on a comprehensive analysis of the recent developments of DEP enabled microfluidic platforms sorted according to the target cancer cell. Each study is critically analyzed, and the features of each platform, the performance, added functionality for clinical use, and the types of samples, used are discussed. We address the novelty of the techniques, strategies, and design configuration used in improving on existing technologies or previous studies. A summary of comparing the developmental extent of each study is made, and we conclude with a treatment of future trends and a brief summary.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...