Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Public Health ; 12: 1289622, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38544725

RESUMO

Introduction: Since the COVID-19 pandemic began, it has spread rapidly across the world and has resulted in recurrent outbreaks. This study aims to describe the COVID-19 epidemiology in terms of COVID-19 cases, deaths, ICU admissions, ventilator requirements, testing, incidence rate, death rate, case fatality rate (CFR) and test positivity rate for each outbreak from the beginning of the pandemic in 2020 till endemicity of COVID-19 in 2022 in Malaysia. Methods: Data was sourced from the GitHub repository and the Ministry of Health's official COVID-19 website. The study period was from the beginning of the outbreak in Malaysia, which began during Epidemiological Week (Ep Wk) 4 in 2020, to the last Ep Wk 18 in 2022. Data were aggregated by Ep Wk and analyzed in terms of COVID-19 cases, deaths, ICU admissions, ventilator requirements, testing, incidence rate, death rate, case fatality rate (CFR) and test positivity rate by years (2020 and 2022) and for each outbreak of COVID-19. Results: A total of 4,456,736 cases, 35,579 deaths and 58,906,954 COVID-19 tests were reported for the period from 2020 to 2022. The COVID-19 incidence rate, death rate, CFR and test positivity rate were reported at 1.085 and 0.009 per 1,000 populations, 0.80 and 7.57%, respectively, for the period from 2020 to 2022. Higher cases, deaths, testing, incidence/death rate, CFR and test positivity rates were reported in 2021 and during the Delta outbreak. This is evident by the highest number of COVID-19 cases, ICU admissions, ventilatory requirements and deaths observed during the Delta outbreak. Conclusion: The Delta outbreak was the most severe compared to other outbreaks in Malaysia's study period. In addition, this study provides evidence that outbreaks of COVID-19, which are caused by highly virulent and transmissible variants, tend to be more severe and devastating if these outbreaks are not controlled early on. Therefore, close monitoring of key epidemiological indicators, as reported in this study, is essential in the control and management of future COVID-19 outbreaks in Malaysia.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , Pandemias , Malásia/epidemiologia , Surtos de Doenças , Hospitalização
2.
Epidemiol Health ; 45: e2023093, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37905314

RESUMO

OBJECTIVES: This study aimed to develop susceptible-exposed-infectious-recovered-vaccinated (SEIRV) models to examine the effects of vaccination on coronavirus disease 2019 (COVID-19) case trends in Malaysia during Phase 3 of the National COVID-19 Immunization Program amidst the Delta outbreak. METHODS: SEIRV models were developed and validated using COVID-19 case and vaccination data from the Ministry of Health, Malaysia, from June 21, 2021 to July 21, 2021 to generate forecasts of COVID-19 cases from July 22, 2021 to December 31, 2021. Three scenarios were examined to measure the effects of vaccination on COVID-19 case trends. Scenarios 1 and 2 represented the trends taking into account the earliest and latest possible times of achieving full vaccination for 80% of the adult population by October 31, 2021 and December 31, 2021, respectively. Scenario 3 described a scenario without vaccination for comparison. RESULTS: In scenario 1, forecasted cases peaked on August 28, 2021, which was close to the peak of observed cases on August 26, 2021. The observed peak was 20.27% higher than in scenario 1 and 10.37% lower than in scenario 2. The cumulative observed cases from July 22, 2021 to December 31, 2021 were 13.29% higher than in scenario 1 and 55.19% lower than in scenario 2. The daily COVID-19 case trends closely mirrored the forecast of COVID-19 cases in scenario 1 (best-case scenario). CONCLUSIONS: Our study demonstrated that COVID-19 vaccination reduced COVID-19 case trends during the Delta outbreak. The compartmental models developed assisted in the management and control of the COVID-19 pandemic in Malaysia.


Assuntos
COVID-19 , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Pandemias/prevenção & controle , Malásia/epidemiologia , Vacinas contra COVID-19 , Modelos Epidemiológicos , Previsões , Vacinação
3.
Front Public Health ; 11: 1213514, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37693699

RESUMO

Background: Globally, the COVID-19 pandemic has affected the transmission dynamics and distribution of dengue. Therefore, this study aims to describe the impact of the COVID-19 pandemic on the geographic and demographic distribution of dengue incidence in Malaysia. Methods: This study analyzed dengue cases from January 2014 to December 2021 and COVID-19 confirmed cases from January 2020 to December 2021 which was divided into the pre (2014 to 2019) and during COVID-19 pandemic (2020 to 2021) phases. The average annual dengue case incidence for geographical and demographic subgroups were calculated and compared between the pre and during the COVID-19 pandemic phases. In addition, Spearman rank correlation was performed to determine the correlation between weekly dengue and COVID-19 cases during the COVID-19 pandemic phase. Results: Dengue trends in Malaysia showed a 4-year cyclical trend with dengue case incidence peaking in 2015 and 2019 and subsequently decreasing in the following years. Reductions of 44.0% in average dengue cases during the COVID-19 pandemic compared to the pre-pandemic phase was observed at the national level. Higher dengue cases were reported among males, individuals aged 20-34 years, and Malaysians across both phases. Weekly dengue cases were significantly correlated (ρ = -0.901) with COVID-19 cases during the COVID-19 pandemic. Conclusion: There was a reduction in dengue incidence during the COVID-19 pandemic compared to the pre-pandemic phase. Significant reductions were observed across all demographic groups except for the older population (>75 years) across the two phases.


Assuntos
COVID-19 , Dengue , Humanos , Masculino , Povo Asiático , COVID-19/epidemiologia , Dengue/epidemiologia , Malásia/epidemiologia , Pandemias , Incidência , Feminino
4.
Artigo em Inglês | MEDLINE | ID: mdl-35742687

RESUMO

In this study, we describe the incidence and distribution of COVID-19 cases in Malaysia at district level and determine their correlation with absolute population and population density, before and during the period that the Delta variant was dominant in Malaysia. METHODS: Data on the number of locally transmitted COVID-19 cases in each of the 145 districts in Malaysia, between 20 September 2020 and 19 September 2021, were manually extracted from official reports. The cumulative number of COVID-19 cases, population and population density of each district were described using choropleth maps. The correlation between population and population density with the cumulative number of COVID-19 cases in each district in the pre-Delta dominant period (20 September 2020-29 June 2021) and during the Delta dominant period (30 June 2021-19 September 2021) were determined using Pearson's correlation. RESULTS: COVID-19 cases were strongly correlated with both absolute population and population density (Pearson's correlation coefficient (r) = 0.87 and r = 0.78, respectively). A majority of the districts had higher numbers of COVID-19 cases during the Delta dominant period compared to the pre-Delta period. The correlation coefficient in the pre-Delta dominant period was r = 0.79 vs. r = 0.86 during the Delta dominant period, whereas the pre-Delta dominant population density was r = 0.72, and in the Delta dominant period, r = 0.76. CONCLUSION: More populous and densely populated districts have a higher risk of transmission of COVID-19, especially with the Delta variant as the dominant circulating strain. Therefore, extra and more stringent control measures should be instituted in highly populated areas to control the spread of COVID-19.


Assuntos
COVID-19 , COVID-19/epidemiologia , Humanos , Malásia/epidemiologia , Densidade Demográfica , SARS-CoV-2/genética
5.
Artigo em Inglês | MEDLINE | ID: mdl-35627796

RESUMO

Background: Gender plays a significant role in health-care-seeking behavior for many diseases. Delays in seeking treatment, diagnosis, and treatment for pulmonary tuberculosis (pTB) may increase the risk of transmission in the community and lead to poorer treatment outcomes and mortality. This study explores the differences in factors associated with the total delay in treatment of male and female pTB patients in Selangor, Malaysia. Methods: A cross-sectional study was conducted from January 2017 to December 2017. Newly diagnosed pTB patients (≥18 years) were recruited from selected government health clinics and hospitals in Selangor during the specified study period. An interviewer-administered questionnaire was used to collect information on sociodemographic characteristics, lifestyle, knowledge about pTB, stigma, distance to the nearest health facility, and chronology of pTB symptom onset, diagnosis, and treatment. The total delay was measured as the length of time between the onset of pTB symptoms to treatment initiation. Factors significantly associated with a longer total delay among men and women were identified using binary logistic regression. Results: A total of 732 patients (61.5% men, 38.5% women) were enrolled in the study. The median total delay was 60 days. Men who have weight loss as a symptom (AOR: 1.63, 95%CI: 1.10-2.41) and are employed (1.89, 1.15-3.11) were more likely to have a longer total delay, while those who know others who have had pTB (0.64, 0.43-0.96) were less likely to have a longer total delay. On the other hand, among women, having a stigma towards TB (0.52, 0.32-0.84) and obtaining a pTB diagnosis at the first medical consultation (0.48, 0.29-0.79) were associated with a shorter total delay. Conclusion: Factors associated with the total delay in pTB treatment were different for male and female pTB patients. Increasing awareness of pTB symptoms and the importance of seeking early medical consultation and a prompt diagnosis among the general public may reduce total delay in pTB treatment.


Assuntos
Tempo para o Tratamento , Tuberculose Pulmonar , Estudos Transversais , Feminino , Humanos , Malásia/epidemiologia , Masculino , Fatores Sexuais , Fatores de Tempo , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/tratamento farmacológico , Tuberculose Pulmonar/epidemiologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-35409511

RESUMO

This study aimed to describe the characteristics of COVID-19 cases and close contacts during the first wave of COVID-19 in Malaysia (23 January 2020 to 26 February 2020), and to analyse the reasons why the outbreak did not continue to spread and lessons that can be learnt from this experience. Characteristics of the cases and close contacts, spatial spread, epidemiological link, and timeline of the cases were examined. An extended SEIR model was developed using several parameters such as the average number of contacts per day per case, the proportion of close contact traced per day and the mean daily rate at which infectious cases are isolated to determine the basic reproduction number (R0) and trajectory of cases. During the first wave, a total of 22 cases with 368 close contacts were traced, identified, tested, quarantine and isolated. Due to the effective and robust outbreak control measures put in place such as early case detection, active screening, extensive contact tracing, testing and prompt isolation/quarantine, the outbreak was successfully contained and controlled. The SEIR model estimated the R0 at 0.9 which further supports the decreasing disease dynamics and early termination of the outbreak. As a result, there was a 11-day gap (free of cases) between the first and second wave which indicates that the first wave was not linked to the second wave.


Assuntos
COVID-19 , COVID-19/epidemiologia , Busca de Comunicante , Humanos , Malásia/epidemiologia , Quarentena , SARS-CoV-2
7.
Front Public Health ; 10: 836358, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35309230

RESUMO

Introduction: The unprecedented COVID-19 pandemic has greatly affected human health and socioeconomic backgrounds. This study examined the spatiotemporal spread pattern of the COVID-19 pandemic in Malaysia from the index case to 291,774 cases in 13 months, emphasizing on the spatial autocorrelation of the high-risk cluster events and the spatial scan clustering pattern of transmission. Methodology: We obtained the confirmed cases and deaths of COVID-19 in Malaysia from the official GitHub repository of Malaysia's Ministry of Health from January 25, 2020 to February 24, 2021, 1 day before the national vaccination program was initiated. All analyses were based on the daily cumulated cases, which are derived from the sum of retrospective 7 days and the current day for smoothing purposes. We examined the daily global, local spatial autocorrelation and scan statistics of COVID-19 cases at district level using Moran's I and SaTScan™. Results: At the initial stage of the outbreak, Moran's I index > 0.5 (p < 0.05) was observed. Local Moran's I depicted the high-high cluster risk expanded from west to east of Malaysia. The cases surged exponentially after September 2020, with the high-high cluster in Sabah, from Kinabatangan on September 1 (cumulative cases = 9,354; Moran's I = 0.34; p < 0.05), to 11 districts on October 19 (cumulative cases = 21,363, Moran's I = 0.52, p < 0.05). The most likely cluster identified from space-time scanning was centered in Jasin, Melaka (RR = 11.93; p < 0.001) which encompassed 36 districts with a radius of 178.8 km, from November 24, 2020 to February 24, 2021, followed by the Sabah cluster. Discussion and Conclusion: Both analyses complemented each other in depicting underlying spatiotemporal clustering risk, giving detailed space-time spread information at district level. This daily analysis could be valuable insight into real-time reporting of transmission intensity, and alert for the public to avoid visiting the high-risk areas during the pandemic. The spatiotemporal transmission risk pattern could be used to monitor the spread of the pandemic.


Assuntos
COVID-19 , COVID-19/epidemiologia , Humanos , Malásia/epidemiologia , Pandemias , Estudos Retrospectivos , Análise Espacial
8.
BMC Infect Dis ; 21(1): 581, 2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34134646

RESUMO

BACKGROUND: Despite high childhood immunization coverage, sporadic cases of diphtheria have been reported in Malaysia in recent years. This study aims to evaluate the seroprevalence of diphtheria among the Malaysian population. METHODS: A total of 3317 respondents age 2 years old to 60 years old were recruited in this study from August to November 2017. Enzyme-linked immunosorbent assay (ELISA) was used to measure the level of IgG antibody against the toxoid of C. diphtheriae in the blood samples of respondents. We classified respondent antibody levels based on WHO definition, as protective (≥0.1 IU/mL) and susceptible (< 0.1 IU/mL) to C. diphtheriae infection. RESULTS: Among the 3317 respondents, 57% were susceptible (38.1% of children and 65.4% of adults) and 43% (61.9% of children and 34.6% of adults) had protective antibody levels against diphtheria. The mean antibody level peaked among individuals aged 1-2 years old (0.59 IU/mL) and 6-7 years old (0.64 IU/mL) but generally decreased with age, falling below 0.1 IU/mL at around 4-6 years old and after age 20 years old. There was a significant association between age [Children: χ2 = 43.22(df = 2),p < 0.001)], gender [Adults: χ2 = 5.58(df = 1),p = 0.018] and ethnicity [Adults: χ2 = 21.49(df = 5),p = 0.001] with diphtheria toxoid IgG antibody level. CONCLUSIONS: About 57% of the Malaysian population have inadequate immunity against diphtheria infection. This is apparently due to waning immunity following childhood vaccination without repeated booster vaccination in adults. Children at age 5-6 years old are particularly vulnerable to diphtheria infection. The booster vaccination dose normally given at 7 years should be given earlier, and an additional booster dose is recommended for high-risk adults.


Assuntos
Anticorpos Antibacterianos/sangue , Toxoide Diftérico/imunologia , Difteria/epidemiologia , Imunoglobulina G/sangue , Adolescente , Adulto , Criança , Pré-Escolar , Corynebacterium diphtheriae/metabolismo , Difteria/patologia , Ensaio de Imunoadsorção Enzimática , Humanos , Lactente , Malásia/epidemiologia , Masculino , Pessoa de Meia-Idade , Estudos Soroepidemiológicos , Adulto Jovem
9.
Artigo em Inglês | MEDLINE | ID: mdl-32751669

RESUMO

Malaysia is currently facing an outbreak of COVID-19. We aim to present the first study in Malaysia to report the reproduction numbers and develop a mathematical model forecasting COVID-19 transmission by including isolation, quarantine, and movement control measures. We utilized a susceptible, exposed, infectious, and recovered (SEIR) model by incorporating isolation, quarantine, and movement control order (MCO) taken in Malaysia. The simulations were fitted into the Malaysian COVID-19 active case numbers, allowing approximation of parameters consisting of probability of transmission per contact (ß), average number of contacts per day per case (ζ), and proportion of close-contact traced per day (q). The effective reproduction number (Rt) was also determined through this model. Our model calibration estimated that (ß), (ζ), and (q) were 0.052, 25 persons, and 0.23, respectively. The (Rt) was estimated to be 1.68. MCO measures reduce the peak number of active COVID-19 cases by 99.1% and reduce (ζ) from 25 (pre-MCO) to 7 (during MCO). The flattening of the epidemic curve was also observed with the implementation of these control measures. We conclude that isolation, quarantine, and MCO measures are essential to break the transmission of COVID-19 in Malaysia.


Assuntos
Betacoronavirus/isolamento & purificação , Infecções por Coronavirus/prevenção & controle , Modelos Teóricos , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , COVID-19 , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Surtos de Doenças/prevenção & controle , Suscetibilidade a Doenças , Previsões , Humanos , Malásia/epidemiologia , Pneumonia Viral/epidemiologia , Pneumonia Viral/virologia , Quarentena , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...