Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heart Lung ; 66: 31-36, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38547583

RESUMO

BACKGROUND: Autoantibodies have been demonstrated to dampen the interferon (IFN) response in viral infections. Elevated levels of these preexisting autoantibodies (aAbs) decrease basal interferon levels, increasing susceptibility to severe infections. OBJECTIVES: This study aimed to evaluate the prevalence of type I IFN aAbs in both plasma and saliva from COVID-19 patients, analyze their neutralizing activity, and examine their associations with clinical outcomes, including the need for mechanical ventilation and in-hospital mortality. METHODS: Prospective analyses of patients admitted to intensive care units in three UAE hospitals from June 2020 to March 2021 were performed to measure aAbs using enzyme-linked immunosorbent assay (ELISA), assess aAbs activity via neutralization assays, and correlate aAbs with clinical outcomes. RESULTS: Type I IFN aAbs (α2 and/or ω) were measured in plasma samples from 213 ICU patients, and positive results were obtained for 20 % (n = 42) of the patients, with half exhibiting neutralizing activity. Saliva samples from a subgroup of 24 patients reflected plasma levels. In multivariate regression analyses, presence of type I IFN aAbs was associated with a higher need for mechanical ventilation (OR 2.58; 95 % CI 1.07-6.22) and greater in-hospital mortality (OR 2.40; 95 % CI 1.13 - 5.07; P = 0.022). Similarly, positive neutralizing aAbs (naAbs) were associated with a greater need for mechanical ventilation (OR 4.96; 95 % CI 1.12-22.07; P = 0.035) and greater odds of in-hospital mortality (OR 2.87; 95 % CI 1.05-7.89; P = 0.041). CONCLUSIONS: Type I IFN autoantibodies can be detected in noninvasive saliva samples, alongside conventional plasma samples, from COVID-19 patients and are associated with worse outcomes, such as greater mechanical ventilation needs and in-hospital mortality.


Assuntos
Autoanticorpos , COVID-19 , Interferon Tipo I , Saliva , Humanos , COVID-19/imunologia , COVID-19/epidemiologia , Saliva/imunologia , Saliva/virologia , Feminino , Masculino , Autoanticorpos/sangue , Pessoa de Meia-Idade , Interferon Tipo I/imunologia , Estudos Prospectivos , Idoso , SARS-CoV-2/imunologia , Mortalidade Hospitalar , Estudos de Viabilidade , Ensaio de Imunoadsorção Enzimática , Respiração Artificial/estatística & dados numéricos , Unidades de Terapia Intensiva , Adulto
2.
Sci Rep ; 13(1): 17344, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37833265

RESUMO

The hallmark of severe COVID-19 is an uncontrolled inflammatory response, resulting from poorly understood immunological dysfunction. While regulatory T (Treg) and B (Breg) cells, as the main elements of immune homeostasis, contribute to the control of hyperinflammation during COVID-19 infection, we hypothesized change in their levels in relation to disease severity and the presence of autoantibodies (auto-Abs) to type I IFNs. Cytometric analysis of blood of 62 COVID-19 patients with different severities revealed an increased proportion of conventional (cTreg; CD25+FoxP3+) and unconventional (uTreg; CD25-FoxP3+) Tregs, as well as the LAG3+ immune suppressive form of cTreg/uTreg, in the blood of severe COVID-19 cases compared to the milder, non-hospitalized cases. The increase in blood levels of cTreg/uTreg, but not LAG3+ cTreg/uTreg subtypes, was even higher among patients with severe COVID-19 and auto-Abs to type I IFNs. Regarding Bregs, compared to the milder, non-hospitalized cases, the proportion of IL-35+ and IL-10+ Bregs was elevated in the blood of severe COVID-19 patients, and to a higher extent in those with auto-Abs to type I IFNs. Moreover, blood levels of cTreg, LAG3+ cTreg/uTreg, and IL-35+ and IL-10+ Breg subtypes were associated with lower blood levels of proinflammatory cytokines such as IL-6, IL-17, TNFα, and IL-1ß. Interestingly, patients who were treated with either tocilizumab and/or a high dose of Vitamin D had higher blood levels of these regulatory cells and better control of the proinflammatory cytokines. These observations suggest that perturbations in the levels of immunomodulatory Tregs and Bregs occur in COVID-19, especially in the presence of auto-Abs to type I IFNs.


Assuntos
Linfócitos B Reguladores , COVID-19 , Humanos , Interleucina-10 , Linfócitos T Reguladores , Autoanticorpos , Citocinas , Fatores de Transcrição Forkhead
3.
PLoS One ; 18(7): e0284061, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37406004

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is progressive and irreversible chronic lung inflammatory disease. Cigarette smoke, the main cause of COPD, is often associated with double-stranded DNA release which potentially activates DNA-sensing pathways, such as STING. This study, therefore, analyzed the role of STING pathway in inducing pulmonary inflammation, steroid resistance, and remodeling in COPD. METHODS: Primary cultured lung fibroblasts were isolated from healthy non-smoker, healthy smoker, and smoker COPD individuals. The expression of STING pathway, remodeling, and steroid resistance signatures were investigated in these fibroblasts upon LPS stimulation and treatment with dexamethasone and/or STING inhibitor, at both mRNA and protein levels using qRT-PCR, western blot, and ELISA. RESULTS: At baseline, STING was elevated in healthy smoker fibroblasts and to a higher extent in smoker COPD fibroblasts when compared to healthy non-smoker fibroblasts. Upon using dexamethasone as monotherapy, STING activity was significantly inhibited in healthy non-smoker fibroblasts but showed resistance in COPD fibroblasts. Treating both healthy and COPD fibroblasts with STING inhibitor in combination with dexamethasone additively inhibited STING pathway in both groups. Moreover, STING stimulation triggered a significant increase in remodeling markers and a reduction in HDAC2 expression. Interestingly, treating COPD fibroblasts with the combination of STING inhibitor and dexamethasone alleviated remodeling and reversed steroid hyporesponsiveness through an upregulation of HDAC2. CONCLUSION: These findings support that STING pathway plays an important role in COPD pathogenesis, via inducing pulmonary inflammation, steroid resistance, and remodeling. This raises the possibility of using STING inhibitor as a potential therapeutic adjuvant in combination with common steroid treatment.


Assuntos
Ácidos Nucleicos , Pneumonia , Doença Pulmonar Obstrutiva Crônica , Humanos , Ácidos Nucleicos/metabolismo , Pulmão/patologia , Pneumonia/patologia , DNA/metabolismo , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Dexametasona/metabolismo , Esteroides/metabolismo
4.
Int Immunopharmacol ; 113(Pt A): 109347, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36332451

RESUMO

Lymphocytes infiltration is a key mechanism that drives asthma lung inflammation. Our previous results demonstrated a significant increase in the frequency and persistence of central memory T (TCM) cells in inflamed lung tissue. This could be due to an increase in the infiltration of TCM in the lung tissue, or the possible differentiation of lung effector memory T (TEM) cells into TCM during lung inflammation. Thus, targeting the accumulation of memory T cells provides a potential approach for asthma treatment. Simvastatin and other statins were shown to impact both the structural and immune lung cells, presenting a distinct immunomodulatory effect on T lymphocyte activation, infiltration, and function. Therefore, we sought to evaluate the effect of simvastatin on the frequency and function of CD4 and CD8 TEM and TCM cells in an ovalbumin (OVA)-induced mouse model of asthma. Simvastatin treatment significantly attenuated the infiltration of both TEM and TCM memory subtypes, along with their production of IL-4 and IL-13 cytokines in a T helper 2 (Th2) OVA-sensitized mouse model. Furthermore, we detected a reduction in ICAM-1 and VCAM-1 levels in the lung homogenate of OVA-sensitized and challenged mice, as well as in human umbilical vein endothelial cells (HUVECs) following treatment with simvastatin. The reduction in leucocyte homing receptors following simvastatin treatment might have contributed to the observed decrease in infiltrated memory T cell numbers. In conclusion, this study demonstrated how statin drug may attenuate allergic asthma lung inflammation by targeting memory T cells and reducing their numbers, whilst limiting their cytokine production at the site of inflammation. Longer clinical trials are required to assess the effectiveness and safety of statin treatment in different asthma phenotypes.


Assuntos
Asma , Inibidores de Hidroximetilglutaril-CoA Redutases , Camundongos , Humanos , Animais , Ovalbumina/uso terapêutico , Sinvastatina/farmacologia , Sinvastatina/uso terapêutico , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Células Endoteliais , Camundongos Endogâmicos BALB C , Pulmão , Inflamação/tratamento farmacológico , Modelos Animais de Doenças , Células Th2 , Líquido da Lavagem Broncoalveolar
5.
PLoS One ; 17(9): e0274841, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36136963

RESUMO

OBJECTIVES: T-helper 17 cell-mediated response and their effector IL-17 cytokine induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is a major cause of COVID-19 disease severity and death. Therefore, the study aimed to determine if IL-17 level in saliva mirrors its circulatory level and hence can be used as a non-invasive biomarker for disease severity. METHODS: Interleukin-17 (IL-17) level was evaluated by ELISA in saliva and blood of 201 adult COVID-19 patients with different levels of severity. The IL-17 saliva level was also associated with COVID-19 disease severity, and need for mechanical ventilation and/or death within 29 days after admission of severe COVID-19 patients. RESULTS: We found that IL-17 level in saliva of COVID-19 patients reflected its circulatory level. High IL-17 level in saliva was associated with COVID-19 severity (P<0.001), need for mechanical ventilation (P = 0.002), and/or death by 29 days (P = 0.002), after adjusting for patients' demographics, comorbidity, and COVID-19 serum severity markers such as D-Dimer, C-reactive protein, and ferritin. CONCLUSION: We propose that saliva IL-17 level could be used as a biomarker to identify patients at risk of developing severe COVID-19.


Assuntos
COVID-19 , Adulto , Biomarcadores , Proteína C-Reativa , COVID-19/diagnóstico , Citocinas , Ferritinas , Humanos , Interleucina-17 , SARS-CoV-2
6.
Life Sci ; 307: 120909, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36028169

RESUMO

AIMS: The ability of vitamin D (VitD) to modulate immune responses in the clinical setting of COVID-19 infection is not well investigated. This study aimed to evaluate the ability of VitD to attenuate inflammatory responses in patients with severe COVID-19. MATERIALS AND METHODS: Blood samples and nasopharyngeal swabs were obtained from patients with severe COVID-19 who had been treated (20 patients), or not (25 patients), with VitD, during their stay in the intensive care unit. Western blotting was used to evaluate the expressions of STAT3, JNK and AKT signaling pathways and ELISA was used to measure levels of IL-6, IL-17, and IL-1ß in blood of these patients. KEY FINDINGS: Reduced levels of STAT3, JNK and AKT pathways and lower levels of proinflammatory cytokines such as IL-6, IL-17, and IL-1ß were observed in VitD treated patients (50,000 IU of cholecalciferol weekly for 3 weeks), and in vitro following treatment of poly I:C stimulated PBMCs with VitD (50 nM of calcitriol). Moreover, lower circulatory levels of these proinflammatory cytokines following treatment with VitD were associated with lower serum levels of COVID-19-related severity markers such as D-dimer and C-reactive proteins (P < 0.001) which in overall resulted in shorter length of ICU stay for VitD treated compared to untreated patients (18 days for VitD treated vs. 28 days for VitD untreated; P = 0.01). SIGNIFICANCE: This study reveals that VitD plays immunomodulatory role during COVID-19 infection, which further emphasizes the importance of maintaining a normal level of this vitamin for the prevention of hyperinflammatory conditions associated with COVID-19.


Assuntos
COVID-19 , Deficiência de Vitamina D , Calcitriol , Citocinas , Humanos , Inflamação , Interleucina-17 , Interleucina-6 , Poli I , Proteínas Proto-Oncogênicas c-akt , Vitamina D/uso terapêutico , Deficiência de Vitamina D/complicações , Deficiência de Vitamina D/tratamento farmacológico , Vitaminas/farmacologia , Vitaminas/uso terapêutico
7.
Int Arch Allergy Immunol ; 183(2): 127-141, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34818243

RESUMO

Memory T cells play a central role in regulating inflammatory responses during asthma. However, tissue distribution of effector memory (TEM) and central memory (TCM) T-cell subtypes, their differentiation, and their contribution to the persistence of lung tissue inflammation during asthma are not well understood. Interestingly, an increase in survival and persistence of memory T cells was reported in asthmatic lungs, which may suggest a shift toward the more persistent TCM phenotype. In this report, we investigated the differential distribution of memory T-cell subtypes during allergic lung inflammation and the mechanism regulating that. Using an OVA-sensitized asthma mouse model, we observed a significant increase in the frequency of TCM cells in inflamed lungs compared to healthy controls. Interestingly, adoptive transfer techniques confirmed substantial infiltration of TCM cells to lung tissues during allergic airway inflammation. Expression levels of TCM homing receptors, CD34 and GlyCAM-1, were also significantly upregulated in the lung tissues of OVA-sensitized mice, which may facilitate the increased TCM infiltration into inflamed lungs. Moreover, a substantial increase in the relative expression of TCM profile-associated genes (EOMES, BCL-6, ID3, TCF-7, BCL-2, BIM, and BMI-1) was noted for TEM cells during lung inflammation, suggesting a shift for TEM into the TCM state. To our knowledge, this is the first study to report an increased infiltration of TCM cells into inflamed lung tissues and to suggest differentiation of TEM to TCM cells in these tissues. Therapeutic interference at TCM infiltration or differentiations could constitute an alternative treatment approach for lung inflammation.


Assuntos
Hipersensibilidade/etiologia , Hipersensibilidade/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Células T de Memória/imunologia , Células T de Memória/metabolismo , Animais , Asma/etiologia , Asma/metabolismo , Asma/patologia , Biomarcadores , Citocinas/metabolismo , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Expressão Gênica , Hipersensibilidade/patologia , Imuno-Histoquímica , Imunofenotipagem , Mediadores da Inflamação , Pulmão/patologia , Contagem de Linfócitos , Camundongos
8.
Free Radic Biol Med ; 172: 688-698, 2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34186206

RESUMO

Severe viral infections, including SARS-COV-2, could trigger disruption of the balance between pro-oxidant and antioxidant mediators; the magnitude of which could reflect the severity of infection and lung injury. Using publicly available COVID-19 transcriptomic datasets, we conducted an in-silico analyses to evaluate the expression levels of 125 oxidative stress genes, including 37 pro-oxidant genes, 32 oxidative-responsive genes, and 56 antioxidant genes. Seven oxidative stress genes were found to be upregulated in whole blood and lung autopsies (MPO, S100A8, S100A9, SRXN1, GCLM, SESN2, and TXN); these genes were higher in severe versus non-severe COVID-19 leucocytes. Oxidative genes were upregulated in inflammatory cells comprising macrophages and CD8+ T cells isolated from bronchioalveolar fluid (BALF), and neutrophils isolated from peripheral blood. MPO, S100A8, and S100A9 were top most upregulated oxidative markers within COVID-19's lung autopsies, whole blood, leucocytes, BALF derived macrophages and circulating neutrophils. The calprotectin's, S100A8 and S100A9 were upregulated in SARS-COV-2 infected human lung epithelium. To validate our in-silico analysis, we conducted qRT-PCR to measure MPO and calprotectin's levels in blood and saliva samples. Relative to uninfected donor controls, MPO, S100A8 and S100A9 were significantly higher in blood and saliva of severe versus asymptomatic COVID-19 patients. Compared to other different viral respiratory infections, coronavirus infection showed a prominent upregulation in oxidative stress genes with MPO and calprotectin at the top of the list. In conclusion, SARS-COV-2 induce the expression of oxidative stress genes via both immune as well as lung structural cells. The observed correlation between oxidative stress genes dysregulation and COVID-19 disease severity deserve more attention. Mechanistical studies are required to confirm the correlation between oxidative stress gene dysregulation, COVID-19 severity, and the net oxidative stress balance.


Assuntos
COVID-19 , SARS-CoV-2 , Linfócitos T CD8-Positivos , Humanos , Proteínas Nucleares , Estresse Oxidativo/genética , Regulação para Cima
9.
J Inflamm Res ; 14: 199-216, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33531826

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has affected millions of people and crippled economies worldwide. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for this pandemic has triggered avid research on its pathobiology to better understand the pathophysiology of COVID-19. In the absence of approved antiviral therapeutic strategies or vaccine platforms capable of effectively targeting this global threat, the hunt for effective therapeutics has led to many candidates being actively evaluated for their efficacy in controlling or preventing COVID-19. In this review, we gathered current evidence on the innate nucleic acid-sensing pathways expected to be elicited by SARS-CoV-2 and the immune evasion mechanisms they have developed to promote viral replication and infection. Within the nucleic acid-sensing pathways, SARS-CoV-2 infection and evasion mechanisms trigger the activation of NOD-signaling and NLRP3 pathways leading to the production of inflammatory cytokines, IL-1ß and IL-6, while muting or blocking cGAS-STING and interferon type I and III pathways, resulting in decreased production of antiviral interferons and delayed innate response. Therefore, blocking the inflammatory arm and boosting the interferon production arm of nucleic acid-sensing pathways could facilitate early control of viral replication and dissemination, prevent disease progression, and cytokine storm development. We also discuss the rationale behind therapeutic modalities targeting these sensing pathways and their implications in the treatment of COVID-19.

10.
Phytomedicine ; 83: 153470, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33524703

RESUMO

BACKGROUND: Breast cancer is the first leading cause of women cancer-related deaths worldwide. While there are many proposed treatments for breast cancer, low efficacy, toxicity, and resistance are still major therapeutic obstacles. Thus, there is a need for safer and more effective therapeutic approaches. Because of the direct link between obesity and carcinogenesis, energy restriction mimetic agents (ERMAs) such as the antidiabetic agent, metformin was proposed as a novel antiproliferative agent. However, the anticancer dose of metformin alone is relatively high and impractical to be implemented safely in patients. The current work aimed to sensitize resistant breast cancer cells to metformin's antiproliferative effect using the natural potential anticancer agent, tangeretin. METHODS: The possible synergistic combination between metformin and tangeretin was initially evaluated using MTT cell viability assay in different breast cancer cell lines (MCF-7, MDA-MB-231, and their resistant phenotype). The possible mechanisms of synergy were investigated via Western blotting analysis, reactive oxygen species (ROS) measurement, annexin/PI assay, cell cycle analysis, and wound healing assay. RESULTS: The results indicated the ability of tangeretin to improve the anticancer activity of metformin. Interestingly, the improved activity was almost equally observed in both parental and resistant cancer cells, which underlines the importance of this combination in cases of the emergence of resistance. The synergy was mediated through the enhanced activation of AMPK and ROS generation in addition to the improved inhibition of cell migration, induction of cell cycle arrest, and apoptosis in cancer cells. CONCLUSION: The current work underscores the importance of metformin as an ERMA in tackling breast cancer and as a novel approach to boost its anticancer activity via a synergistic combination with tangeretin.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Flavonas/administração & dosagem , Humanos , Células MCF-7 , Metformina/administração & dosagem
11.
Mol Ther Methods Clin Dev ; 20: 109-121, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33200082

RESUMO

The immune system is tightly regulated by the activity of stimulatory and inhibitory immune receptors. This immune homeostasis is usually disturbed during chronic viral infection. Using publicly available transcriptomic datasets, we conducted in silico analyses to evaluate the expression pattern of 38 selected immune inhibitory receptors (IRs) associated with different myeloid and lymphoid immune cells during coronavirus disease 2019 (COVID-19) infection. Our analyses revealed a pattern of overall upregulation of IR mRNA during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. A large number of IRs expressed on both lymphoid and myeloid cells were upregulated in nasopharyngeal swabs (NPSs), while lymphoid-associated IRs were specifically upregulated in autopsies, reflecting severe, terminal stage COVID-19 disease. Eight genes (BTLA, LAG3, FCGR2B, PDCD1, CEACAM1, CTLA4, CD72, and SIGLEC7), shared by NPSs and autopsies, were more expressed in autopsies and were directly correlated with viral levels. Single-cell data from blood and bronchoalveolar samples also reflected the observed association between IR upregulation and disease severity. Moreover, compared to SARS-CoV-1, influenza, and respiratory syncytial virus infections, the number and intensities of upregulated IRs were higher in SARS-CoV-2 infections. In conclusion, the immunopathology and severity of COVID-19 could be attributed to dysregulation of different immune inhibitors. Targeting one or more of these immune inhibitors could represent an effective therapeutic approach for the treatment of COVID-19 early and late immune dysregulations.

12.
Arch Toxicol ; 94(12): 4037-4041, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32808185

RESUMO

Besides lung drastic involvement, SARS-CoV-2 severely affected other systems including liver. Emerging epidemiological studies brought the attentions towards liver injury and impairment as a potential outcome of COVID19. Angiotensin-converting enzyme 2 (ACE2) and Transmembrane serine protease (TMPRSS2) are the main cell entry receptors of SARS-CoV-2. We have tested the ability of medications to regulate expression of SARS-CoV-2 receptors. Understanding that may reflect how such medications may affect the level of infectivity and permissibility of the liver following COVID-19. Using transcriptomic datasets, Toxicogenomic Project-Genomics Assisted Toxicity Evaluation System (Open TG-GATEs) and GSE30351, we have tested the ability of ninety common medications to regulate COVID-19 receptors expression in human primary hepatocytes. Most medications displayed a dose-dependent change in expression of receptors which could hint at a potentially more pronounced change with chronic use. The expression level of TMPRSS2 was increased noticeably with a number of medications such as metformin. Within the analgesics, acetaminophen revealed a dose-dependent reduction in expression of ACE2, while non-steroidal anti-inflammatory drugs had mixed effect on receptors expression. To confirm the observed effects on primary human hepatocytes, rat hepatocyte treatments data was obtained from DrugMatrix toxicogenomic database (GSE57805), which showed a similar ACE2 and TMPRSS2 expression pattern. Treatment of common co-morbidities often require chronic use of multiple medications, which may result in an additive increase in the expression of ACE2 and TMPRSS2. More research is needed to determine the effect of different medications on COVID-19 receptors.


Assuntos
Betacoronavirus/patogenicidade , Hepatócitos/efeitos dos fármacos , Hepatócitos/virologia , Peptidil Dipeptidase A/genética , Serina Endopeptidases/genética , Internalização do Vírus/efeitos dos fármacos , Acetaminofen/administração & dosagem , Acetaminofen/farmacologia , Enzima de Conversão de Angiotensina 2 , Animais , COVID-19 , Células Cultivadas , Infecções por Coronavirus/terapia , Relação Dose-Resposta a Droga , Griseofulvina/farmacologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Hipoglicemiantes/farmacologia , Fígado/citologia , Fígado/virologia , Pandemias , Pneumonia Viral/terapia , Ratos , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...