Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Mater ; 15(7): 746-53, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27183327

RESUMO

The specific optical absorption of an organic semiconductor is critical to the performance of organic optoelectronic devices. For example, higher light-harvesting efficiency can lead to higher photocurrent in solar cells that are limited by sub-optimal electrical transport. Here, we compare over 40 conjugated polymers, and find that many different chemical structures share an apparent maximum in their extinction coefficients. However, a diketopyrrolopyrrole-thienothiophene copolymer shows remarkably high optical absorption at relatively low photon energies. By investigating its backbone structure and conformation with measurements and quantum chemical calculations, we find that the high optical absorption can be explained by the high persistence length of the polymer. Accordingly, we demonstrate high absorption in other polymers with high theoretical persistence length. Visible light harvesting may be enhanced in other conjugated polymers through judicious design of the structure.

2.
J Am Chem Soc ; 137(3): 1314-21, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25547347

RESUMO

The design, synthesis, and characterization of a series of diketopyrrolopyrrole-based copolymers with different chalcogenophene comonomers (thiophene, selenophene, and tellurophene) for use in field-effect transistors and organic photovoltaic devices are reported. The effect of the heteroatom substitution on the optical, electrochemical, and photovoltaic properties and charge carrier mobilities of these polymers is discussed. The results indicate that by increasing the size of the chalcogen atom (S < Se < Te), polymer band gaps are narrowed mainly due to LUMO energy level stabilization. In addition, the larger heteroatomic size also increases intermolecular heteroatom-heteroatom interactions facilitating the formation of polymer aggregates leading to enhanced field-effect mobilities of 1.6 cm(2)/(V s). Bulk heterojunction solar cells based on the chalcogenophene polymer series blended with fullerene derivatives show good photovoltaic properties, with power conversion efficiencies ranging from 7.1-8.8%. A high photoresponse in the near-infrared (NIR) region with excellent photocurrents above 20 mA cm(-2) was achieved for all polymers, making these highly efficient low band gap polymers promising candidates for use in tandem solar cells.

3.
J Am Chem Soc ; 135(31): 11537-40, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23876163

RESUMO

Systematically moving the alkyl-chain branching position away from the polymer backbone afforded two new thieno[3,2-b]thiophene-diketopyrrolopyrrole (DPPTT-T) polymers. When used as donor materials in polymer:fullerene solar cells, efficiencies exceeding 7% were achieved without the use of processing additives. The effect of the position of the alkyl-chain branching point on the thin-film morphology was investigated using X-ray scattering techniques and the effects on the photovoltaic and charge-transport properties were also studied. For both solar cell and transistor devices, moving the branching point further from the backbone was beneficial. This is the first time that this effect has been shown to improve solar cell performance. Strong evidence is presented for changes in microstructure across the series, which is most likely the cause for the photocurrent enhancement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA