Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36499022

RESUMO

A six-subunit ATPase ring forms the central hub of the replication forks in all domains of life. This ring performs a helicase function to separate the two complementary DNA strands to be replicated and drives the replication machinery along the DNA. Disruption of this helicase/ATPase ring is associated with genetic instability and diseases such as cancer. The helicase/ATPase rings of eukaryotes and archaea consist of six minichromosome maintenance (MCM) proteins. Prior structural studies have shown that MCM rings bind one encircled strand of DNA in a spiral staircase, suggesting that the ring pulls this strand of DNA through its central pore in a hand-over-hand mechanism where the subunit at the bottom of the staircase dissociates from DNA and re-binds DNA one step above the staircase. With high-resolution cryo-EM, we show that the MCM ring of the archaeal organism Saccharolobus solfataricus binds an encircled DNA strand in two different modes with different numbers of subunits engaged to DNA, illustrating a plausible mechanism for the alternating steps of DNA dissociation and re-association that occur during DNA translocation.


Assuntos
Proteínas Arqueais , DNA Helicases , Sulfolobus solfataricus , Adenosina Trifosfatases/metabolismo , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Replicação do DNA , Proteínas de Manutenção de Minicromossomo/metabolismo , Sulfolobus solfataricus/genética , Sulfolobus solfataricus/metabolismo , Translocação Genética , DNA Helicases/genética , DNA Helicases/metabolismo
2.
Acta Crystallogr F Struct Biol Commun ; 77(Pt 6): 177-186, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34100776

RESUMO

Cells strongly regulate DNA replication to ensure genomic stability and prevent several diseases, including cancers. Eukaryotes and archaea strictly control DNA-replication initiation by the regulated loading of hexameric minichromosome maintenance (MCM) rings to encircle both strands of the DNA double helix followed by regulated activation of the loaded rings such that they then encircle one DNA strand while excluding the other. Both steps involve an open/closed ring transformation, allowing DNA strands to enter or exit. Here, the crystal structure of a dimer of the N-terminal domain of Sulfolobus solfataricus MCM with an intersubunit interface that is more extensive than in closed-ring structures, while including common interactions to enable facile interconversion, is presented. It is shown that the identified interface could stabilize open MCM rings by compensating for lost interactions at an open neighbor interface and that the prior open-ring cryo-EM structure of MCM loading has a similar extended interface adjacent to its open interface.


Assuntos
Proteínas de Manutenção de Minicromossomo/química , Multimerização Proteica , Sulfolobus solfataricus/química , Sequência de Aminoácidos , Cristalização , Cristalografia por Raios X , DNA/química , Domínios Proteicos , Subunidades Proteicas/química
3.
Nat Commun ; 10(1): 3117, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31308367

RESUMO

The DNA translocation activity of the minichromosome maintenance (MCM) complex powers DNA strand separation of the replication forks of eukaryotes and archaea. Here we illustrate an atomic level mechanism for this activity with a crystal structure of an archaeal MCM hexamer bound to single-stranded DNA and nucleotide cofactors. Sequence conservation indicates this rotary mechanism is fully possible for all eukaryotes and archaea. The structure definitively demonstrates the ring orients during translocation with the N-terminal domain leading, indicating that the translocation activity could also provide the physical basis of replication initiation where a double-hexamer idly encircling double-stranded DNA transforms to single-hexamers that encircle only one strand. In this mechanism, each strand binds to the N-terminal tier of one hexamer and the AAA+ tier of the other hexamer such that one ring pulls on the other, aligning equivalent interfaces to enable each hexamer to pull its translocation strand outside of the opposing hexamer.


Assuntos
Replicação do DNA , Proteínas de Manutenção de Minicromossomo/química , Sulfolobus solfataricus/genética , Adenosina Trifosfatases/química , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/fisiologia , Cristalografia por Raios X , DNA Arqueal/química , Proteínas de Manutenção de Minicromossomo/fisiologia , Translocação Genética
4.
Sci Adv ; 3(4): e1602506, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28508041

RESUMO

Breakage of one strand of DNA is the most common form of DNA damage. Most damaged DNA termini require end-processing in preparation for ligation. The importance of this step is highlighted by the association of defects in the 3'-end processing enzyme tyrosyl DNA phosphodiesterase 1 (TDP1) and neurodegeneration and by the cytotoxic induction of protein-linked DNA breaks (PDBs) and oxidized nucleic acid intermediates during chemotherapy and radiotherapy. Although much is known about the repair of PDBs in the nucleus, little is known about this process in the mitochondria. We reveal that TDP1 resolves mitochondrial PDBs (mtPDBs), thereby promoting mitochondrial gene transcription. Overexpression of a toxic form of mitochondrial topoisomerase I (TOP1mt*), which generates excessive mtPDBs, results in a TDP1-dependent compensatory up-regulation of mitochondrial gene transcription. In the absence of TDP1, the imbalance in transcription of mitochondrial- and nuclear-encoded electron transport chain (ETC) subunits results in misassembly of ETC complex III. Bioenergetics profiling further reveals that TDP1 promotes oxidative phosphorylation under both basal and high energy demands. It is known that mitochondrial dysfunction results in free radical leakage and nuclear DNA damage; however, the detection of intermediates of radical damage to DNA is yet to be shown. Consequently, we report an increased accumulation of carbon-centered radicals in cells lacking TDP1, using electron spin resonance spectroscopy. Overexpression of the antioxidant enzyme superoxide dismutase 1 (SOD1) reduces carbon-centered adducts and protects TDP1-deficient cells from oxidative stress. Conversely, overexpression of the amyotrophic lateral sclerosis-associated mutant SOD1G93A leads to marked sensitivity. Whereas Tdp1 knockout mice develop normally, overexpression of SOD1G93A suggests early embryonic lethality. Together, our data show that TDP1 resolves mtPDBs, thereby regulating mitochondrial gene transcription and oxygen consumption by oxidative phosphorylation, thus conferring cellular protection against reactive oxygen species-induced damage.


Assuntos
Dano ao DNA , DNA Mitocondrial/metabolismo , Proteínas Mitocondriais/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transcrição Gênica , Animais , DNA Mitocondrial/genética , Camundongos , Camundongos Knockout , Proteínas Mitocondriais/genética , Fosforilação Oxidativa , Consumo de Oxigênio , Diester Fosfórico Hidrolases/genética
5.
Acta Crystallogr F Struct Biol Commun ; 72(Pt 7): 545-51, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27380371

RESUMO

The crystal structure of the N-terminal domain of the Pyrococcus furiosus minichromosome maintenance (MCM) protein as a double hexamer is described. The MCM complex is a ring-shaped helicase that unwinds DNA at the replication fork of eukaryotes and archaea. Prior to replication initiation, the MCM complex assembles as an inactive double hexamer at specific sites of DNA. The presented structure is highly consistent with previous MCM double-hexamer structures and shows two MCM hexamers with a head-to-head interaction mediated by the N-terminal domain. Minor differences include a diminished head-to-head interaction and a slightly reduced inter-hexamer rotation.


Assuntos
Proteínas Arqueais/química , DNA Arqueal/química , Proteínas de Manutenção de Minicromossomo/química , Pyrococcus furiosus/química , Zinco/química , Sequência de Aminoácidos , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Sítios de Ligação , Cátions Bivalentes , Clonagem Molecular , Cristalografia por Raios X , Replicação do DNA , DNA Arqueal/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Cinética , Proteínas de Manutenção de Minicromossomo/genética , Proteínas de Manutenção de Minicromossomo/metabolismo , Modelos Moleculares , Plasmídeos/química , Plasmídeos/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Pyrococcus furiosus/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato , Zinco/metabolismo
6.
Biochimie ; 100: 121-4, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24161509

RESUMO

In recent years, our knowledge surrounding mammalian mitochondrial DNA (mtDNA) damage and repair has increased significantly. Greater insights into the factors that govern mtDNA repair are being elucidated, thus contributing to an increase in our understanding year on year. In this short review two enzymes, tyrosyl-DNA-phosphodiesterase 1 (TDP1) and aprataxin (APTX), involved in mitochondrial single strand break repair (SSBR) are discussed. The background into the identification of these enzymes in mtDNA repair is communicated with further deliberation into some of the specifics relating to the import of these enzymes into the mitochondrion. With the discovery of these enzymes in mitochondria comes the probability that other mechanisms underlying mtDNA repair are yet to be fully understood, suggesting there is much left to discover when shaping our understanding of this relatively undefined subject.


Assuntos
Reparo do DNA , DNA Mitocondrial/genética , Proteínas de Ligação a DNA/genética , Mitocôndrias/genética , Proteínas Nucleares/genética , Diester Fosfórico Hidrolases/genética , Animais , Núcleo Celular/genética , Núcleo Celular/metabolismo , Quebras de DNA de Cadeia Simples , DNA Mitocondrial/química , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Humanos , Mitocôndrias/metabolismo , Proteínas Nucleares/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Transporte Proteico
7.
J Neurosci ; 33(26): 10790-801, 2013 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-23804100

RESUMO

Mitochondrial defects within substantia nigra (SN) neurons are implicated in the pathogenesis of Parkinson's disease. SN neurons show increased mitochondrial defects, mitochondrial DNA deletion levels, and susceptibility to such dysfunction, although the role of mitochondria in neuronal degeneration remains uncertain. In this study, we addressed this important question by exploring changes within the mitochondria of SN neurons from patients with primary mitochondrial diseases to determine whether mitochondrial dysfunction leads directly to neuronal cell loss. We counted the pigmented neurons and quantified mitochondrial respiratory activity, deficiencies in mitochondrial proteins, and the percentage of pathogenic mutations in single neurons. We found evidence of defects of both complex I and complex IV of the respiratory chain in all patients. We found that marked neuronal cell loss was only observed in a few patients with mitochondrial disease and that all these patients had mutations in polymerase gamma (POLG), which leads to the formation of multiple mitochondrial DNA deletions over time, similar to aging and Parkinson's disease. Interestingly, we detected α-synuclein pathology in two mitochondrial patients with POLG mutations. Our observations highlight the complex relationship between mitochondrial dysfunction and the susceptibility of SN neurons to degeneration and α-synuclein pathology. Our finding that the loss of SN neurons was only severe in patients with POLG mutations suggests that acquired mitochondrial defects may be less well tolerated by SN neurons than by inherited ones.


Assuntos
DNA Mitocondrial/genética , Mutação/fisiologia , Neurônios/fisiologia , Substância Negra/fisiologia , Adulto , Envelhecimento/fisiologia , Causas de Morte , Contagem de Células , DNA Polimerase gama , DNA Polimerase Dirigida por DNA/genética , Tratos Extrapiramidais/patologia , Feminino , Deleção de Genes , Humanos , Imuno-Histoquímica , Corpos de Lewy/patologia , Doença por Corpos de Lewy/patologia , Masculino , Pessoa de Meia-Idade , Doenças Mitocondriais/patologia , Doenças Mitocondriais/psicologia , Proteínas Mitocondriais/metabolismo , Mutação Puntual , Prostaglandina-Endoperóxido Sintases/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Substância Negra/citologia , Tirosina 3-Mono-Oxigenase/metabolismo , Adulto Jovem , alfa-Sinucleína/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...