Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Elife ; 122023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37083521

RESUMO

Background: Short-term forecasts of infectious disease burden can contribute to situational awareness and aid capacity planning. Based on best practice in other fields and recent insights in infectious disease epidemiology, one can maximise the predictive performance of such forecasts if multiple models are combined into an ensemble. Here, we report on the performance of ensembles in predicting COVID-19 cases and deaths across Europe between 08 March 2021 and 07 March 2022. Methods: We used open-source tools to develop a public European COVID-19 Forecast Hub. We invited groups globally to contribute weekly forecasts for COVID-19 cases and deaths reported by a standardised source for 32 countries over the next 1-4 weeks. Teams submitted forecasts from March 2021 using standardised quantiles of the predictive distribution. Each week we created an ensemble forecast, where each predictive quantile was calculated as the equally-weighted average (initially the mean and then from 26th July the median) of all individual models' predictive quantiles. We measured the performance of each model using the relative Weighted Interval Score (WIS), comparing models' forecast accuracy relative to all other models. We retrospectively explored alternative methods for ensemble forecasts, including weighted averages based on models' past predictive performance. Results: Over 52 weeks, we collected forecasts from 48 unique models. We evaluated 29 models' forecast scores in comparison to the ensemble model. We found a weekly ensemble had a consistently strong performance across countries over time. Across all horizons and locations, the ensemble performed better on relative WIS than 83% of participating models' forecasts of incident cases (with a total N=886 predictions from 23 unique models), and 91% of participating models' forecasts of deaths (N=763 predictions from 20 models). Across a 1-4 week time horizon, ensemble performance declined with longer forecast periods when forecasting cases, but remained stable over 4 weeks for incident death forecasts. In every forecast across 32 countries, the ensemble outperformed most contributing models when forecasting either cases or deaths, frequently outperforming all of its individual component models. Among several choices of ensemble methods we found that the most influential and best choice was to use a median average of models instead of using the mean, regardless of methods of weighting component forecast models. Conclusions: Our results support the use of combining forecasts from individual models into an ensemble in order to improve predictive performance across epidemiological targets and populations during infectious disease epidemics. Our findings further suggest that median ensemble methods yield better predictive performance more than ones based on means. Our findings also highlight that forecast consumers should place more weight on incident death forecasts than incident case forecasts at forecast horizons greater than 2 weeks. Funding: AA, BH, BL, LWa, MMa, PP, SV funded by National Institutes of Health (NIH) Grant 1R01GM109718, NSF BIG DATA Grant IIS-1633028, NSF Grant No.: OAC-1916805, NSF Expeditions in Computing Grant CCF-1918656, CCF-1917819, NSF RAPID CNS-2028004, NSF RAPID OAC-2027541, US Centers for Disease Control and Prevention 75D30119C05935, a grant from Google, University of Virginia Strategic Investment Fund award number SIF160, Defense Threat Reduction Agency (DTRA) under Contract No. HDTRA1-19-D-0007, and respectively Virginia Dept of Health Grant VDH-21-501-0141, VDH-21-501-0143, VDH-21-501-0147, VDH-21-501-0145, VDH-21-501-0146, VDH-21-501-0142, VDH-21-501-0148. AF, AMa, GL funded by SMIGE - Modelli statistici inferenziali per governare l'epidemia, FISR 2020-Covid-19 I Fase, FISR2020IP-00156, Codice Progetto: PRJ-0695. AM, BK, FD, FR, JK, JN, JZ, KN, MG, MR, MS, RB funded by Ministry of Science and Higher Education of Poland with grant 28/WFSN/2021 to the University of Warsaw. BRe, CPe, JLAz funded by Ministerio de Sanidad/ISCIII. BT, PG funded by PERISCOPE European H2020 project, contract number 101016233. CP, DL, EA, MC, SA funded by European Commission - Directorate-General for Communications Networks, Content and Technology through the contract LC-01485746, and Ministerio de Ciencia, Innovacion y Universidades and FEDER, with the project PGC2018-095456-B-I00. DE., MGu funded by Spanish Ministry of Health / REACT-UE (FEDER). DO, GF, IMi, LC funded by Laboratory Directed Research and Development program of Los Alamos National Laboratory (LANL) under project number 20200700ER. DS, ELR, GG, NGR, NW, YW funded by National Institutes of General Medical Sciences (R35GM119582; the content is solely the responsibility of the authors and does not necessarily represent the official views of NIGMS or the National Institutes of Health). FB, FP funded by InPresa, Lombardy Region, Italy. HG, KS funded by European Centre for Disease Prevention and Control. IV funded by Agencia de Qualitat i Avaluacio Sanitaries de Catalunya (AQuAS) through contract 2021-021OE. JDe, SMo, VP funded by Netzwerk Universitatsmedizin (NUM) project egePan (01KX2021). JPB, SH, TH funded by Federal Ministry of Education and Research (BMBF; grant 05M18SIA). KH, MSc, YKh funded by Project SaxoCOV, funded by the German Free State of Saxony. Presentation of data, model results and simulations also funded by the NFDI4Health Task Force COVID-19 (https://www.nfdi4health.de/task-force-covid-19-2) within the framework of a DFG-project (LO-342/17-1). LP, VE funded by Mathematical and Statistical modelling project (MUNI/A/1615/2020), Online platform for real-time monitoring, analysis and management of epidemic situations (MUNI/11/02202001/2020); VE also supported by RECETOX research infrastructure (Ministry of Education, Youth and Sports of the Czech Republic: LM2018121), the CETOCOEN EXCELLENCE (CZ.02.1.01/0.0/0.0/17-043/0009632), RECETOX RI project (CZ.02.1.01/0.0/0.0/16-013/0001761). NIB funded by Health Protection Research Unit (grant code NIHR200908). SAb, SF funded by Wellcome Trust (210758/Z/18/Z).


Assuntos
COVID-19 , Doenças Transmissíveis , Epidemias , Humanos , COVID-19/diagnóstico , COVID-19/epidemiologia , Previsões , Modelos Estatísticos , Estudos Retrospectivos
2.
Philos Trans R Soc Lond B Biol Sci ; 376(1829): 20200283, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-34053260

RESUMO

The time-varying reproduction number (Rt: the average number of secondary infections caused by each infected person) may be used to assess changes in transmission potential during an epidemic. While new infections are not usually observed directly, they can be estimated from data. However, data may be delayed and potentially biased. We investigated the sensitivity of Rt estimates to different data sources representing COVID-19 in England, and we explored how this sensitivity could track epidemic dynamics in population sub-groups. We sourced public data on test-positive cases, hospital admissions and deaths with confirmed COVID-19 in seven regions of England over March through August 2020. We estimated Rt using a model that mapped unobserved infections to each data source. We then compared differences in Rt with the demographic and social context of surveillance data over time. Our estimates of transmission potential varied for each data source, with the relative inconsistency of estimates varying across regions and over time. Rt estimates based on hospital admissions and deaths were more spatio-temporally synchronous than when compared to estimates from all test positives. We found these differences may be linked to biased representations of subpopulations in each data source. These included spatially clustered testing, and where outbreaks in hospitals, care homes, and young age groups reflected the link between age and severity of the disease. We highlight that policy makers could better target interventions by considering the source populations of Rt estimates. Further work should clarify the best way to combine and interpret Rt estimates from different data sources based on the desired use. This article is part of the theme issue 'Modelling that shaped the early COVID-19 pandemic response in the UK'.


Assuntos
COVID-19/epidemiologia , Pandemias , Viés , COVID-19/prevenção & controle , COVID-19/transmissão , COVID-19/virologia , Inglaterra/epidemiologia , Humanos , SARS-CoV-2
3.
J Theor Biol ; 483: 109991, 2019 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-31487497

RESUMO

Heterogeneity plays an important role in the emergence, persistence and control of infectious diseases. Metapopulation models are often used to describe spatial heterogeneity, and the transition from random- to heterogeneous-mixing is made by incorporating the interaction, or coupling, within and between subpopulations. However, such couplings are difficult to measure explicitly; instead, their action through the correlations between subpopulations is often all that can be observed. We use moment-closure methods to investigate how the coupling and resulting correlation are related, considering systems of multiple identical interacting populations on highly symmetric complex networks: the complete network, the k-regular tree network, and the star network. We show that the correlation between the prevalence of infection takes a relatively simple form and can be written in terms of the coupling, network parameters and epidemiological parameters only. These results provide insight into the effect of metapopulation network structure on endemic disease dynamics, and suggest that detailed case-reporting data alone may be sufficient to infer the strength of between population interaction and hence lead to more accurate mathematical descriptions of infectious disease behaviour.


Assuntos
Doenças Transmissíveis/epidemiologia , Doenças Endêmicas , Dinâmica Populacional , Humanos , Cadeias de Markov , Modelos Biológicos , Análise Numérica Assistida por Computador , Processos Estocásticos
4.
Epidemics ; 26: 58-67, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30213654

RESUMO

It is increasingly apparent that heterogeneity in the interaction between individuals plays an important role in the dynamics, persistence, evolution and control of infectious diseases. In epidemic modelling two main forms of heterogeneity are commonly considered: spatial heterogeneity due to the segregation of populations and heterogeneity in risk at the same location. The transition from random-mixing to heterogeneous-mixing models is made by incorporating the interaction, or coupling, within and between subpopulations. However, such couplings are difficult to measure explicitly; instead, their action through the correlations between subpopulations is often all that can be observed. Here, using moment-closure methodology supported by stochastic simulation, we investigate how the coupling and resulting correlation are related. We focus on the simplest case of interactions, two identical coupled populations, and show that for a wide range of parameters the correlation between the prevalence of infection takes a relatively simple form. In particular, the correlation can be approximated by a logistic function of the between population coupling, with the free parameter determined analytically from the epidemiological parameters. These results suggest that detailed case-reporting data alone may be sufficient to infer the strength of between population interaction and hence lead to more accurate mathematical descriptions of infectious disease behaviour.


Assuntos
Doenças Transmissíveis/epidemiologia , Modelos Biológicos , Epidemias , Humanos , Cadeias de Markov , Processos Estocásticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...