Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Genet ; 14(4): e1007350, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29702640

RESUMO

A cascade of alternative sigma factors directs developmental gene expression during spore formation by the bacterium Bacillus subtilis. As the spore develops, a tightly regulated switch occurs in which the early-acting sigma factor σF is replaced by the late-acting sigma factor σG. The gene encoding σG (sigG) is transcribed by σF and by σG itself in an autoregulatory loop; yet σG activity is not detected until σF-dependent gene expression is complete. This separation in σF and σG activities has been suggested to be due at least in part to a poorly understood intercellular checkpoint pathway that delays sigG expression by σF. Here we report the results of a careful examination of sigG expression during sporulation. Unexpectedly, our findings argue against the existence of a regulatory mechanism to delay sigG transcription by σF and instead support a model in which sigG is transcribed by σF with normal timing, but at levels that are very low. This low-level expression of sigG is the consequence of several intrinsic features of the sigG regulatory and coding sequence-promoter spacing, secondary structure potential of the mRNA, and start codon identity-that dampen its transcription and translation. Especially notable is the presence of a conserved hairpin in the 5' leader sequence of the sigG mRNA that occludes the ribosome-binding site, reducing translation by up to 4-fold. Finally, we demonstrate that misexpression of sigG from regulatory and coding sequences lacking these features triggers premature σG activity in the forespore during sporulation, as well as inappropriate σG activity during vegetative growth. Altogether, these data indicate that transcription and translation of the sigG gene is tuned to prevent vegetative expression of σG and to ensure the precise timing of the switch from σF to σG in the developing spore.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/genética , Fator sigma/genética , Bacillus subtilis/fisiologia , Proteínas de Bactérias/biossíntese , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Sequências Repetidas Invertidas , Modelos Genéticos , Conformação de Ácido Nucleico , Regiões Promotoras Genéticas , Biossíntese de Proteínas , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fator sigma/biossíntese , Transdução de Sinais , Esporos Bacterianos/genética , Esporos Bacterianos/fisiologia , Transcrição Gênica
2.
J Bacteriol ; 198(9): 1451-63, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26929302

RESUMO

UNLABELLED: SpoIIQ is an essential component of a channel connecting the developing forespore to the adjacent mother cell during Bacillus subtilis sporulation. This channel is generally required for late gene expression in the forespore, including that directed by the late-acting sigma factor σ(G) Here, we present evidence that SpoIIQ also participates in a previously unknown gene regulatory circuit that specifically represses expression of the gene encoding the anti-sigma factor CsfB, a potent inhibitor of σ(G) The csfB gene is ordinarily transcribed in the forespore only by the early-acting sigma factor σ(F) However, in a mutant lacking the highly conserved SpoIIQ transmembrane amino acid Tyr-28, csfB was also aberrantly transcribed later by σ(G), the very target of CsfB inhibition. This regulation of csfB by SpoIIQ Tyr-28 is specific, given that the expression of other σ(F)-dependent genes was unaffected. Moreover, we identified a conserved element within the csfB promoter region that is both necessary and sufficient for SpoIIQ Tyr-28-mediated inhibition. These results indicate that SpoIIQ is a bifunctional protein that not only generally promotes σ(G)activity in the forespore as a channel component but also specifically maximizes σ(G)activity as part of a gene regulatory circuit that represses σ(G)-dependent expression of its own inhibitor, CsfB. Finally, we demonstrate that SpoIIQ Tyr-28 is required for the proper localization and stability of the SpoIIE phosphatase, raising the possibility that these two multifunctional proteins cooperate to fine-tune developmental gene expression in the forespore at late times. IMPORTANCE: Cellular development is orchestrated by gene regulatory networks that activate or repress developmental genes at the right time and place. Late gene expression in the developing Bacillus subtilis spore is directed by the alternative sigma factor σ(G) The activity of σ(G)requires a channel apparatus through which the adjacent mother cell provides substrates that generally support gene expression. Here we report that the channel protein SpoIIQ also specifically maximizes σ(G)activity as part of a previously unknown regulatory circuit that prevents σ(G)from activating transcription of the gene encoding its own inhibitor, the anti-sigma factor CsfB. The discovery of this regulatory circuit significantly expands our understanding of the gene regulatory network controlling late gene expression in the developing B. subtilis spore.


Assuntos
Bacillus subtilis/genética , Bacillus subtilis/fisiologia , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Fator sigma/genética , Aminoácidos , Expressão Gênica , Redes Reguladoras de Genes , Mutação , Alinhamento de Sequência , Fator sigma/metabolismo , Esporos Bacterianos/fisiologia , Fatores de Transcrição
3.
Appl Microbiol Biotechnol ; 99(18): 7589-99, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25994254

RESUMO

Clostridium thermocellum can rapidly solubilize cellulose and produces ethanol as an end product of its metabolism. As such, it is a candidate for bioethanol production from plant matter. In this study, we developed an inducible expression system for C. thermocellum based on its native celC operon. We enhanced expression over the native operon structure by placing the repressor gene, glyR3, immediately after the celC promoter, and expressing the target gene after glyR3. Upon the addition of the inducer substrate, laminaribiose, an approximately 40-fold increase in gene expression was obtained using the test gene spo0A. Furthermore, induction of the sporulation histidine kinase, clo1313_1942, increased sporulation frequency by approximately 10,000-fold relative to an uninduced control. We have also shown that the laminaribiose (ß1-3-linked carbon source) utilization pathway is not catabolite repressed by cellobiose, a ß1-4-linked carbon source frequently used for C. thermocellum cultivation in laboratory conditions. Selective expression of target genes has the potential to inform metabolic engineering strategies as well as increase fundamental understanding of C. thermocellum biology.


Assuntos
Clostridium thermocellum/genética , Dissacarídeos/metabolismo , Regulação Bacteriana da Expressão Gênica , Biologia Molecular/métodos , Plasmídeos , Ativação Transcricional/efeitos dos fármacos , Regiões Promotoras Genéticas , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo
4.
Anaerobe ; 28: 109-19, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24933585

RESUMO

In this study, we sought to identify genes involved in the onset of spore formation in Clostridium thermocellum via targeted gene deletions, gene over-expression, and transcriptional analysis. We determined that three putative histidine kinases, clo1313_0286, clo1313_2735 and clo1313_1942 were positive regulators of sporulation, while a fourth kinase, clo1313_1973, acted as a negative regulator. Unlike Bacillus or other Clostridium species, the deletion of a single positively regulating kinase was sufficient to abolish sporulation in this organism. Sporulation could be restored in these asporogenous strains via overexpression of any one of the positive regulators, indicating a high level of redundancy between these kinases. In addition to having a sporulation defect, deletion of clo1313_2735 produced L-forms. Thus, this kinase may play an additional role in repressing L-form formation. This work suggests that C. thermocellum enters non-growth states based on the sensory input from multiple histidine kinases. The ability to control the development of non-growth states at the genetic level has the potential to inform strategies for improved strain development, as well as provide valuable insight into C. thermocellum biology.


Assuntos
Clostridium thermocellum/enzimologia , Clostridium thermocellum/fisiologia , Proteínas Quinases/metabolismo , Esporos Bacterianos/crescimento & desenvolvimento , Clostridium thermocellum/genética , Deleção de Genes , Expressão Gênica , Perfilação da Expressão Gênica , Histidina Quinase , Proteínas Quinases/genética
5.
BMC Microbiol ; 12: 180, 2012 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-22897981

RESUMO

BACKGROUND: Clostridium thermocellum is an anaerobic thermophilic bacterium that exhibits high levels of cellulose solublization and produces ethanol as an end product of its metabolism. Using cellulosic biomass as a feedstock for fuel production is an attractive prospect, however, growth arrest can negatively impact ethanol production by fermentative microorganisms such as C. thermocellum. Understanding conditions that lead to non-growth states in C. thermocellum can positively influence process design and culturing conditions in order to optimize ethanol production in an industrial setting. RESULTS: We report here that Clostridium thermocellum ATCC 27405 enters non-growth states in response to specific growth conditions. Non-growth states include the formation of spores and a L-form-like state in which the cells cease to grow or produce the normal end products of metabolism. Unlike other sporulating organisms, we did not observe sporulation of C. thermocellum in low carbon or nitrogen environments. However, sporulation did occur in response to transfers between soluble and insoluble substrates, resulting in approximately 7% mature spores. Exposure to oxygen caused a similar sporulation response. Starvation conditions during continuous culture did not result in spore formation, but caused the majority of cells to transition to a L-form state. Both spores and L-forms were determined to be viable. Spores exhibited enhanced survival in response to high temperature and prolonged storage compared to L-forms and vegetative cells. However, L-forms exhibited faster recovery compared to both spores and stationary phase cells when cultured in rich media. CONCLUSIONS: Both spores and L-forms cease to produce ethanol, but provide other advantages for C. thermocellum including enhanced survival for spores and faster recovery for L-forms. Understanding the conditions that give rise to these two different non-growth states, and the implications that each has for enabling or enhancing C. thermocellum survival may promote the efficient cultivation of this organism and aid in its development as an industrial microorganism.


Assuntos
Clostridium thermocellum/citologia , Clostridium thermocellum/fisiologia , Formas L/fisiologia , Esporos Bacterianos/fisiologia , Celulose/metabolismo , Clostridium thermocellum/efeitos dos fármacos , Clostridium thermocellum/metabolismo , Etanol/metabolismo , Etanol/toxicidade , Viabilidade Microbiana/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...