Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Microbiol Resour Announc ; 12(12): e0046823, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37909720

RESUMO

A collection of 47 bacteria isolated from the mucilage of aerial roots of energy sorghum is available at the Great Lakes Bioenergy Research Center, Michigan State University, Michigan, USA. We enriched bacteria with putative plant-beneficial phenotypes and included information on phenotypic diversity, taxonomy, and whole genome sequences.

4.
Microbiol Resour Announc ; 12(12): e0048423, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-37909721

RESUMO

A collection of 44 isolates isolated from the epicuticular wax of stems of energy sorghum is available at the Great Lakes Bioenergy Researcher Center, Michigan State University, MI, USA. We enriched bacteria with putative plant-beneficial phenotypes and include information on their phenotypic diversity, taxonomy, and whole-genome sequences.

5.
Microbiol Spectr ; : e0133223, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37772854

RESUMO

Terpenes are among the oldest and largest class of plant-specialized bioproducts that are known to affect plant development, adaptation, and biological interactions. While their biosynthesis, evolution, and function in aboveground interactions with insects and individual microbial species are well studied, how different terpenes impact plant microbiomes belowground is much less understood. Here we designed an experiment to assess how belowground exogenous applications of monoterpenes (1,8-cineole and linalool) and a sesquiterpene (nerolidol) delivered through an artificial root system impacted its belowground bacterial and fungal microbiome. We found that the terpene applications had significant and variable impacts on bacterial and fungal communities, depending on terpene class and concentration; however, these impacts were localized to the artificial root system and the fungal rhizosphere. We complemented this experiment with pure culture bioassays on responsive bacteria and fungi isolated from the sorghum rhizobiome. Overall, higher concentrations (200 µM) of nerolidol were inhibitory to Ferrovibrium and tested Firmicutes. While fungal isolates of Penicillium and Periconia were also more inhibited by higher concentrations (200 µM) of nerolidol, Clonostachys was enhanced at this higher level and together with Humicola was inhibited by the lower concentration tested (100 µM). On the other hand, 1,8-cineole had an inhibitory effect on Orbilia at both tested concentrations but had a promotive effect at 100 µM on Penicillium and Periconia. Similarly, linalool at 100 µM had significant growth promotion in Mortierella, but an inhibitory effect for Orbilia. Together, these results highlight the variable direct effects of terpenes on single microbial isolates and demonstrate the complexity of microbe-terpene interactions in the rhizobiome. IMPORTANCE Terpenes represent one of the largest and oldest classes of plant-specialized metabolism, but their role in the belowground microbiome is poorly understood. Here, we used a "rhizobox" mesocosm experimental set-up to supply different concentrations and classes of terpenes into the soil compartment with growing sorghum for 1 month to assess how these terpenes affect sorghum bacterial and fungal rhizobiome communities. Changes in bacterial and fungal communities between treatments belowground were characterized, followed by bioassays screening on bacterial and fungal isolates from the sorghum rhizosphere against terpenes to validate direct microbial responses. We found that microbial growth stimulatory and inhibitory effects were localized, terpene specific, dose dependent, and transient in time. This work paves the way for engineering terpene metabolisms in plant microbiomes for improved sustainable agriculture and bioenergy crop production.

6.
Curr Protoc ; 2(9): e533, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36066286

RESUMO

Microbiomes provide critical functions that support animals, plants, and ecosystems. High-throughput sequencing (HTS) has become an essential tool for the cultivation-independent study of microbiomes found in diverse environments, but requires effective and meaningful controls. One such critical control is a mock microbial community, which is used as a positive control for nucleic acid extraction, marker gene amplification, and sequencing. While mock community standards can be purchased, they can be costly and often include only medically relevant microbial strains that are not expected to be major players in non-human microbiomes. As an alternative, it is possible to design and construct a do-it-yourself (DIY) mock community, which can then be used as a positive control that is specifically customized to the protocol needs of a particular study system. In this article, we describe protocols to select appropriate microbial strains for the construction of a mock community. We first describe the steps to verify the identity of community members via Sanger sequencing. Then, we provide guidance on assembling and storing the DIY mock community as viable whole cells. This includes steps to create standard growth curves referenced to plate counts for each member, so that the community members can be quantified and later compared in terms of their "expected versus returned" relative contributions after sequencing. We also describe appropriate methods for the cryostorage of the fully assembled mock community as viable whole cells, so that they can be used as a unit in a microbiome analysis, from the lysis and nucleic acid extraction steps onwards. Finally, we provide an example of returned data and interpretation of DIY mock community sequences, discussing how to assess possible contamination and identify protocol biases for particular members. Overall, DIY mock communities serve to determine success and possible bias in a cultivation-independent microbiome analysis. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Strain identification and verification using Sanger sequencing Basic Protocol 2: Creation of glycerol stocks of each mock community strain for long-term cryostorage Basic Protocol 3: Assessment of strain freezer viability without cryoprotectant Basic Protocol 4: Creation of standard curve to determine CFU/ml of a liquid culture as a function of optical density Basic Protocol 5: Full mock community assembly using community concentration calculations and standard curves.


Assuntos
Bactérias , Microbiota , Animais , Bactérias/genética , DNA Bacteriano/genética , Microbiota/genética , Reação em Cadeia da Polimerase/métodos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos
7.
Front Microbiol ; 11: 199, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117187

RESUMO

Poor survival on plants can limit the efficacy of Biological Control Agents (BCAs) in the field. Yet bacteria survive in the atmosphere, despite their exposure to high solar radiation and extreme temperatures. If conditions in the atmosphere are similar to, or more extreme than, the environmental conditions on the plant surface, then precipitation may serve as a reservoir of robust BCAs. To test this hypothesis, two hundred and fifty-four rain-borne isolates were screened for in vitro inhibition of Erwinia amylovora, the causal agent of fire blight, as well as of other plant pathogenic bacteria, fungi and oomycetes. Two isolates showed strong activity against E. amylovora and other plant pathogenic bacteria, while other isolates showed activity against fungal and oomycete pathogens. Survival assays suggested that the two isolates that inhibited E. amylovora were able to survive on apple blossoms and branches similarly to E. amylovora. Pathogen population size and associated fire blight symptoms were significantly reduced when detached apple blossoms were treated with the two isolates before pathogen inoculation, however, disease reduction on attached blossoms within an orchard was inconsistent. Using whole genome sequencing, the isolates were identified as Pantoea agglomerans and P. ananatis, respectively. A UV-mutagenesis screen pointed to a phenazine antibiotic D-alanylgriseoluteic acid synthesis gene cluster as being at the base of the antimicrobial activity of the P. agglomerans isolate. Our work reveals the potential of precipitation as an under-explored source of BCAs, whole genome sequencing as an effective approach to precisely identify BCAs, and UV-mutagenesis as a technically simple screen to investigate the genetic basis of BCAs. More field trials are needed to determine the efficacy of the identified BCAs in fire blight control.

8.
Phytopathology ; 110(4): 768-779, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31829116

RESUMO

Routine strain-level identification of plant pathogens directly from symptomatic tissue could significantly improve plant disease control and prevention. Here we tested the Oxford Nanopore Technologies (ONT) MinION sequencer for metagenomic sequencing of tomato plants either artificially inoculated with a known strain of the bacterial speck pathogen Pseudomonas syringae pv. tomato or collected in the field and showing bacterial spot symptoms caused by one of four Xanthomonas species. After species-level identification via ONT's WIMP software and the third-party tools Sourmash and MetaMaps, we used Sourmash and MetaMaps with a custom database of representative genomes of bacterial tomato pathogens to attempt strain-level identification. In parallel, each metagenome was assembled and the longest contigs were used as query with the genome-based microbial identification Web service LINbase. Both the read-based and assembly-based approaches correctly identified P. syringae pv. tomato strain T1 in the artificially inoculated samples. The pathogen strain in most field samples was identified as a member of Xanthomonas perforans group 2. This result was confirmed by whole genome sequencing of colonies isolated from one of the samples. Although in our case metagenome-based pathogen identification at the strain level was achieved, caution still must be exercised in interpreting strain-level results because of the challenges inherent to assigning reads to specific strains and the error rate of nanopore sequencing.


Assuntos
Solanum lycopersicum , Xanthomonas , Bactérias , Metagenoma , Doenças das Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA