Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Theor Appl Genet ; 126(10): 2467-75, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23807636

RESUMO

Two bread wheat lines each with a translocation on chromosome 7DL from either Thinopyrum intermedium (TC5 and TC14) or Thinopyrum ponticum (T4m), were hybridized in a ph1b mutant background to enhance recombination between the two translocated chromosomal segments. The frequency of recombinants was high in lines derived from the larger and similar-sized translocations (TC5/T4m), but much lower when derived from different-sized translocations (TC14/T4m). Recombinant translocations contained combinations of resistance genes Bdv2, Lr19 and Sr25 conferring resistance to Barley yellow dwarf virus (BYDV), leaf rust and stem rust, respectively. Their genetic composition was identified using bioassays and molecular markers specific for the two progenitor Thinopyrum species. This set of 7DL Th. ponticum/intermedium recombinant translocations was termed the Pontin series. In addition to Thinopyrum markers, the size of the translocation was estimated with the aid of wheat markers mapped on each of the 7DL deletion bins. Bioassays for BYDV, leaf rust and stem rust were performed under greenhouse and field conditions. Once separated from ph1b background, the Pontin recombinant translocations were stable and showed normal inheritance in successive backcrosses. The reported Pontin translocations integrate important resistance genes in a single linkage block which will allow simultaneous selection of disease resistance. Combinations of Bdv2 + Lr19 or Lr19 + Sr25 in both long and short translocations, are available to date. The smaller Pontins, comprising only 20 % of the distal portion of 7DL, will be most attractive to breeders.


Assuntos
Resistência à Doença/genética , Genes de Plantas/genética , Doenças das Plantas/genética , Poaceae/genética , Recombinação Genética/genética , Translocação Genética , Triticum/genética , Bioensaio , Pão , Segregação de Cromossomos/genética , Cromossomos de Plantas/genética , Marcadores Genéticos , Luteovirus/fisiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Triticum/microbiologia , Triticum/virologia
2.
Genome ; 52(6): 537-46, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19483772

RESUMO

Resistance to both barley yellow dwarf virus (BYDV) and cereal yellow dwarf virus (CYDV) has been demonstrated in wheat genetic stocks with Thinopyrum intermedium chromatin. A number of resistance-bearing translocations have been reported on chromosome arm 7DL from two independent Th. intermedium sources; one source is the addition line L1 and the other is the spontaneous substitution line P29. Another source of resistance in wheat cytogenetic stocks is available as a 2Ai(2D) substitution line. We used a set of 38 molecular markers and the available deletion stocks to compare the size of the 7DL translocations more comprehensively than has been done previously. We also compared the efficacy of BYDV resistance of the various genetic stocks both before and after transfer to a common genetic background. TC14 was confirmed as carrying the smallest translocation, replacing about 20% of the distal end of 7DL. TC5 and TC10 had 90% of the chromosome arm replaced by Th. intermedium chromatin; the proximal 10% corresponded to wheat chromatin. YW642 appeared to have the whole 7DL replaced by Th. intermedium chromatin, as confirmed by the co-dominant marker cfd68 mapping on the bin nearest the centromere. Translocation line P961341 had bins 3, 7, and 8 replaced by Th. intermedium chromatin, making this the second smallest translocation with BYDV and CYDV resistance. The translocation sizes reported here differ from some of the previous estimates. The translocated Th. intermedium segments appeared to be bigger than the replaced wheat 7DL fragments. All the resistances derived from the L1 and P29 group 7 chromosomes and the 2Ai#2 chromosome were effective in reducing the number of infected plants and the mean virus titre, regardless of the background. Some evidence is discussed suggesting the long arm of the Th. intermedium group 7 chromosome 7Ai#1 carries two resistances, the distal Bdv2 and a proximal second gene.


Assuntos
Imunidade Inata/genética , Luteovirus/patogenicidade , Doenças das Plantas/genética , Poaceae/genética , Translocação Genética/genética , Triticum/genética , Triticum/virologia , Mapeamento Cromossômico , Cromossomos de Plantas , DNA de Plantas , Doenças das Plantas/virologia , Reação em Cadeia da Polimerase , Recombinação Genética
3.
Theor Appl Genet ; 116(1): 63-75, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17906848

RESUMO

Rusts and barley yellow dwarf virus (BYDV) are among the main diseases affecting wheat production world wide for which wild relatives have been the source of a number of translocations carrying resistance genes. Nevertheless, along with desirable traits, alien translocations often carry deleterious genes. We have generated recombinants in a bread wheat background between two alien translocations: TC5, ex-Thinopyrum (Th) intermedium, carrying BYDV resistance gene Bdv2; and T4m, ex-Th. ponticum, carrying rust resistance genes Lr19 and Sr25. Because both these translocations are on the wheat chromosome arm 7DL, homoeologous recombination was attempted in the double hemizygote (TC5/T4m) in a background homozygous for the ph1b mutation. The identification of recombinants was facilitated by the use of newly developed molecular markers for each of the alien genomes represented in the two translocations and by studying derived F(2), F(3) and doubled haploid populations. The occurrence of recombination was confirmed with molecular markers and bioassays on families of testcrosses between putative recombinants and bread wheat, and in F(2) populations derived from the testcrosses. As a consequence it has been possible to derive a genetic map of markers and resistance genes on these previously fixed alien linkage blocks. We have obtained fertile progeny carrying new tri-genomic recombinant chromosomes. Furthermore we have demonstrated that some of the recombinants carried resistance genes Lr19 and Bdv2 yet lacked the self-elimination trait associated with shortened T4 segments. We have also shown that the recombinant translocations are fixed and stable once removed from the influence of the ph1b. The molecular markers developed in this study will facilitate selection of individuals carrying recombinant Th. intermedium-Th. ponticum translocations (Pontin series) in breeding programs.


Assuntos
Doenças das Plantas/genética , Poaceae/genética , Recombinação Genética , Translocação Genética , Triticum/genética , Mapeamento Cromossômico , Cromossomos de Plantas , Cruzamentos Genéticos , DNA de Plantas/genética , Doenças das Plantas/virologia , Triticum/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...