Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 217(4): 1610-1624, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29218850

RESUMO

Auxin gradients are sustained by series of influx and efflux carriers whose subcellular localization is sensitive to both exogenous and endogenous factors. Recently the localization of the Arabidopsis thaliana auxin efflux carrier PIN-FORMED (PIN) 6 was reported to be tissue-specific and regulated through unknown mechanisms. Here, we used genetic, molecular and pharmacological approaches to characterize the molecular mechanism(s) controlling the subcellular localization of PIN6. PIN6 localizes to endomembrane domains in tissues with low PIN6 expression levels such as roots, but localizes at the plasma membrane (PM) in tissues with increased PIN6 expression such as the inflorescence stem and nectary glands. We provide evidence that this dual localization is controlled by PIN6 phosphorylation and demonstrate that PIN6 is phosphorylated by mitogen-activated protein kinases (MAPKs) MPK4 and MPK6. The analysis of transgenic plants expressing PIN6 at PM or in endomembrane domains reveals that PIN6 subcellular localization is critical for Arabidopsis inflorescence stem elongation post-flowering (bolting). In line with a role for PIN6 in plant bolting, inflorescence stems elongate faster in pin6 mutant plants than in wild-type plants. We propose that PIN6 subcellular localization is under the control of developmental signals acting on tissue-specific determinants controlling PIN6-expression levels and PIN6 phosphorylation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Membrana Celular/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Membrana Celular/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Interações Hidrofóbicas e Hidrofílicas , Hipocótilo/efeitos dos fármacos , Hipocótilo/metabolismo , Ácidos Indolacéticos/farmacologia , Inflorescência/efeitos dos fármacos , Inflorescência/metabolismo , Mutação com Perda de Função , Meristema/efeitos dos fármacos , Meristema/metabolismo , Fosforilação/efeitos dos fármacos , Fosfotreonina/metabolismo , Plantas Geneticamente Modificadas , Transporte Proteico/efeitos dos fármacos , Frações Subcelulares/metabolismo
2.
Physiol Plant ; 156(1): 29-39, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26362993

RESUMO

Plants with the crassulacean acid metabolism (CAM) express high-metabolic plasticity, to adjust to environmental stresses. This article hypothesizes that irradiance and nocturnal temperatures are the major limitations for CAM at higher latitudes such as the Azores (37°45'N). Circadian CAM expression in Ananas comosus L. Merr. (pineapple) was assessed by the diurnal pattern of leaf carbon fixation into l-malate at the solstices and equinoxes, and confirmed by determining maximal phosphoenolpyruvate carboxylase (PEPC) activity in plant material. Metabolic adjustments to environmental conditions were confirmed by gas exchange measurements, and integrated with environmental data to determine CAM's limiting factors: light and temperature. CAM plasticity was observed at the equinoxes, under similar photoperiods, but different environmental conditions. In spring, CAM expression was similar between vegetative and flowering plants, while in autumn, flowering (before anthesis) and fructifying (with fully developed fruit before ripening) plants accumulated more l-malate. Below 100 µmol m(-2) s(-1) , CAM phase I was extended, reducing CAM phase III during the day. Carbon fixation inhibition may occur by two major pathways: nocturnal temperature (<15°C) inhibiting PEPC activity and l-malate accumulation; and low irradiance influencing the interplay between CAM phase I and III, affecting carboxylation and decarboxylation. Both have important consequences for plant development in autumn and winter. Observations were confirmed by flowering time prediction using environmental data, emphasizing that CAM expression had a strong seasonal regulation due to a complex network response to light and temperature, allowing pineapple to survive in environments not suitable for high productivity.


Assuntos
Ananas/fisiologia , Regulação da Expressão Gênica de Plantas , Malatos/metabolismo , Ananas/efeitos da radiação , Ciclo do Carbono , Clima , Meio Ambiente , Flores/fisiologia , Flores/efeitos da radiação , Luz , Fotoperíodo , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Transpiração Vegetal/fisiologia , Estações do Ano , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...