Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Anim Sci ; 22: 100322, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38045012

RESUMO

Stevia mash (SM), leaves of Stevia rebaudiana Bertoni plant, is an additive used in poultry that enhances growth and health. Objective: to determine the effect of 1 % SM on productive parameters, gut health, and the cecal microbiome in broilers between the first 15 and 21 days old. One hundred sixty male, 1-day-old broilers (48.5 ± 2.5 g) were divided into Control (C) without SM and Treated (T) with 1 % SM on diet, during 15/21 days. Each subgroup had eight broilers/five repetitions/treatment. At day 15 or 21, all broilers were dissected, Fabricius Bursa and Gut removed and processed for histomorphometry, followed by Villi Height/Crypt Deep (VH/CD) ratio. Conversion Index (CI) was determined. The V3-V4 region of 16S rRNA gene was amplified from DNA obtained from pooled cecal contents and sequenced on Illumina Miseq PE 2 × 250 platform. Sequence processing and taxonomic assignments were performed using the SHAMAN pipeline. Both T groups have better VH/CD Ratios than C groups (p ≤ 0.05). In guts, increased plasmatic and goblet cells number and thicker mucus layer were found in T15 and T21. All groups received SM showed early immunological maturity in Fabricius Bursa. IC was similar between all treatments. Faecalibacterium, Ruminococcus torques group, and Bacteroides were the major genera modulated by SM addition. At 15 and 21 days old, SM exerts a impact on diversity and evenness of the cecal microbiome.  Conclusion: SM (1 %) produced early immunologic maturity on Fabricius Bursa, increased intestinal functionality, and modified the microbiota, increasing beneficial microbial genera and microbial diversity.

2.
Sci Rep ; 13(1): 22168, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38092837

RESUMO

Bacillus sp. MEP218, a soil bacterium with high potential as a source of bioactive molecules, produces mostly C16-C17 fengycin and other cyclic lipopeptides (CLP) when growing under previously optimized culture conditions. This work addressed the elucidation of the genome sequence of MEP218 and its taxonomic classification. The genome comprises 3,944,892 bp, with a total of 3474 coding sequences and a G + C content of 46.59%. Our phylogenetic analysis to determine the taxonomic position demonstrated that the assignment of the MEP218 strain to Bacillus velezensis species provides insights into its evolutionary context and potential functional attributes. The in silico genome analysis revealed eleven gene clusters involved in the synthesis of secondary metabolites, including non-ribosomal CLP (fengycins and surfactin), polyketides, terpenes, and bacteriocins. Furthermore, genes encoding phytase, involved in the release of phytic phosphate for plant and animal nutrition, or other enzymes such as cellulase, xylanase, and alpha 1-4 glucanase were detected. In vitro antagonistic assays against Salmonella typhimurium, Acinetobacter baumanii, Escherichia coli, among others, demonstrated a broad spectrum of C16-C17 fengycin produced by MEP218. MEP218 genome sequence analysis expanded our understanding of the diversity and genetic relationships within the Bacillus genus and updated the Bacillus databases with its unique trait to produce antibacterial fengycins and its potential as a resource of biotechnologically useful enzymes.


Assuntos
Bacillus , Genoma Bacteriano , Filogenia , Bacillus/genética , Bacillus/metabolismo , Lipopeptídeos/química , Antibacterianos/farmacologia , Antibacterianos/metabolismo
3.
Front Plant Sci ; 12: 678976, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367203

RESUMO

Sinorhizobium meliloti contains the negatively charged phosphatidylglycerol and cardiolipin as well as the zwitterionic phosphatidylethanolamine (PE) and phosphatidylcholine (PC) as major membrane phospholipids. In previous studies we had isolated S. meliloti mutants that lack PE or PC. Although mutants deficient in PE are able to form nitrogen-fixing nodules on alfalfa host plants, mutants lacking PC cannot sustain development of any nodules on host roots. Transcript profiles of mutants unable to form PE or PC are distinct; they differ from each other and they are different from the wild type profile. For example, a PC-deficient mutant of S. meliloti shows an increase of transcripts that encode enzymes required for succinoglycan biosynthesis and a decrease of transcripts required for flagellum formation. Indeed, a PC-deficient mutant is unable to swim and overproduces succinoglycan. Some suppressor mutants, that regain swimming and form normal levels of succinoglycan, are altered in the ExoS sensor. Our findings suggest that the lack of PC in the sinorhizobial membrane activates the ExoS/ChvI two-component regulatory system. ExoS/ChvI constitute a molecular switch in S. meliloti for changing from a free-living to a symbiotic life style. The periplasmic repressor protein ExoR controls ExoS/ChvI function and it is thought that proteolytic ExoR degradation would relieve repression of ExoS/ChvI thereby switching on this system. However, as ExoR levels are similar in wild type, PC-deficient mutant and suppressor mutants, we propose that lack of PC in the bacterial membrane provokes directly a conformational change of the ExoS sensor and thereby activation of the ExoS/ChvI two-component system.

4.
Front Microbiol ; 10: 3107, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32038550

RESUMO

Bacillus amyloliquefaciens MEP218 is an autochthonous bacterial isolate with antibacterial and antifungal activities against a wide range of phytopathogenic microorganisms. Cyclic lipopeptides (CLP), particularly fengycins, produced by this bacterium; are the main antimicrobial compounds responsible for the growth inhibition of phytopathogens. In this work, the CLP fraction containing fengycins with antibacterial activity was characterized by LC-ESI-MS/MS. In addition, the antibacterial activity of these fengycins was evaluated on the pathogens Xanthomonas axonopodis pv. vesicatoria (Xav), a plant pathogen causing the bacterial spot disease, and Pseudomonas aeruginosa PA01, an opportunistic human pathogen. In vitro inhibition assays showed bactericidal effects on Xav and PA01. Atomic force microscopy images revealed dramatic alterations in the bacterial surface topography in response to fengycins exposure. Cell damage was evidenced by a decrease in bacterial cell heights and the loss of intracellular content measured by potassium efflux assays. Furthermore, the viability of MRC-5 human normal lung fibroblasts was not affected by the treatment with fengycins. This study shows in vivo evidence on the less-known properties of fengycins as antibacterial molecules and leaves open the possibility of using this CLP as a novel antibiotic.

5.
Carbohydr Polym ; 181: 918-922, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29254054

RESUMO

Here, we describe a simple, non-time consuming and inexpensive method for monitoring of Calcofluor white M2R-binding exopolysaccharides in individual bacterial cells. This method was demonstrated by time-lapse microscopy of succinoglycan-producing cells of the plant-symbiotic alpha-proteobacterium Sinorhizobium meliloti. The method is most likely applicable to other bacteria producing ß-(1→3) and ß-(1→4) linked polysaccharides.


Assuntos
Benzenossulfonatos/metabolismo , Microscopia/métodos , Polissacarídeos Bacterianos/biossíntese , Sinorhizobium meliloti/citologia , Sinorhizobium meliloti/metabolismo , Coloração e Rotulagem , Imagem com Lapso de Tempo/métodos , Fenótipo
6.
Microbiol Res ; 190: 55-62, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27393999

RESUMO

Azospirillum brasilense is a soil bacterium capable of promoting plant growth. Several surface components were previously reported to be involved in the attachment of A. brasilense to root plants. Among these components are the exopolysaccharide (EPS), lipopolysaccharide (LPS) and the polar flagellum. Flagellin from polar flagellum is glycosylated and it was suggested that genes involved in such a posttranslational modification are the same ones involved in the biosynthesis of sugars present in the O-antigen of the LPS. In this work, we report on the characterization of two homologs present in A. brasilense Cd, to the well characterized flagellin modification genes, flmA and flmB, from Aeromonas caviae. We show that mutations in either flmA or flmB genes of A. brasilense resulted in non-motile cells due to alterations in the polar flagellum assembly. Moreover, these mutations also affected the capability of A. brasilense cells to adsorb to maize roots and to produce LPS and EPS. By generating a mutant containing the polar flagellum affected in their rotation, we show the importance of the bacterial motility for the early colonization of maize roots.


Assuntos
Azospirillum brasilense/fisiologia , Aderência Bacteriana , Proteínas de Bactérias/genética , Carboidratos Epimerases/genética , Flagelos/metabolismo , Hidroliases/genética , Biogênese de Organelas , Polissacarídeos Bacterianos/metabolismo , Transaminases/genética , Aeromonas caviae/genética , Azospirillum brasilense/genética , Locomoção , Mutação , Raízes de Plantas/microbiologia , Homologia de Sequência , Zea mays/microbiologia
7.
Microbiology (Reading) ; 162(3): 552-563, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26813656

RESUMO

In Gram-negative bacteria, tyrosine phosphorylation has been shown to play a role in the control of exopolysaccharide (EPS) production. This study demonstrated that the chromosomal ORF SMc02309 from Sinorhizobium meliloti 2011 encodes a protein with significant sequence similarity to low molecular mass protein-tyrosine phosphatases (LMW-PTPs), such as the Escherichia coli Wzb. Unlike other well-characterized EPS biosynthesis gene clusters, which contain neighbouring LMW-PTPs and kinase, the S. meliloti succinoglycan (EPS I) gene cluster located on megaplasmid pSymB does not encode a phosphatase. Biochemical assays revealed that the SMc02309 protein hydrolyses p-nitrophenyl phosphate (p-NPP) with kinetic parameters similar to other bacterial LMW-PTPs. Furthermore, we show evidence that SMc02309 is not the LMW-PTP of the bacterial tyrosine-kinase (BY-kinase) ExoP. Nevertheless, ExoN, a UDP-glucose pyrophosphorylase involved in the first stages of EPS I biosynthesis, is phosphorylated at tyrosine residues and constitutes an endogenous substrate of the SMc02309 protein. Additionally, we show that the UDP-glucose pyrophosphorylase activity is modulated by SMc02309-mediated tyrosine dephosphorylation. Moreover, a mutation in the SMc02309 gene decreases EPS I production and delays nodulation on Medicago sativa roots.


Assuntos
Polissacarídeos Bacterianos/biossíntese , Proteínas Tirosina Fosfatases/metabolismo , Sinorhizobium meliloti/enzimologia , Sinorhizobium meliloti/metabolismo , UTP-Glucose-1-Fosfato Uridililtransferase/metabolismo , Medicago sativa/microbiologia , Nodulação , Raízes de Plantas/microbiologia
8.
Lipids ; 46(5): 435-41, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21523564

RESUMO

Growth and survival of bacteria depend on homeostasis of membrane lipids, and the capacity to adjust lipid composition to adapt to various environmental stresses. Membrane fluidity is regulated in part by the ratio of unsaturated to saturated fatty acids present in membrane lipids. Here, we studied the effects of high growth temperature and salinity (NaCl) stress, separately or in combination, on fatty acids composition and de novo synthesis in two peanut-nodulating Bradyrhizobium strains (fast-growing TAL1000 and slow-growing SEMIA6144). Both strains contained the fatty acids palmitic, stearic, and cis-vaccenic + oleic. TAL1000 also contained eicosatrienoic acid and cyclopropane fatty acid. The most striking change, in both strains, was a decreased percentage of cis-vaccenic + oleic (≥ 80% for TAL1000), and an associated increase in saturated fatty acids, under high growth temperature or combined conditions. Cyclopropane fatty acid was significantly increased in TAL1000 under the above conditions. De novo synthesis of fatty acids was shifted to the synthesis of a higher proportion of saturated fatty acids under all tested conditions, but to a lesser degree for SEMIA6144 compared to TAL1000. The major adaptive response of these rhizobial strains to increased temperature and salinity was an altered degree of fatty acid unsaturation, to maintain the normal physical state of membrane lipids.


Assuntos
Arachis/microbiologia , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Rhizobium/metabolismo , Salinidade , Cromatografia Gasosa , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Temperatura
9.
FEMS Microbiol Lett ; 303(2): 123-31, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20030724

RESUMO

Phosphatidylcholine, the major phospholipid in eukaryotes, is found in rhizobia and in many other bacteria interacting with eukaryotic hosts. Phosphatidylcholine has been shown to be required for a successful interaction of Bradyrhizobium japonicum USDA 110 with soybean roots. Our aim was to study the role of bacterial phosphatidylcholine in the Bradyrhizobium-peanut (Arachis hypogaea) symbiosis. Phospholipid N-methyltransferase (Pmt) and minor phosphatidylcholine synthase (Pcs) activities were detected in crude extracts of the peanut-nodulating strain Bradyrhizobium sp. SEMIA 6144. Our results suggest that phosphatidylcholine formation in Bradyrhizobium sp. SEMIA 6144 is mainly due to the phospholipid methylation pathway. Southern blot analysis using pmt- and pcs-probes of B. japonicum USDA 110 revealed a pcs and multiple pmt homologues in Bradyrhizobium sp. SEMIA 6144. A pmtA knockout mutant was constructed in Bradyrhizobium sp. SEMIA 6144 that showed a 50% decrease in the phosphatidylcholine content in comparison with the wild-type strain. The mutant was severely affected in motility and cell size, but formed wild-type-like nodules on its host plant. However, in coinoculation experiments, the pmtA-deficient mutant was less competitive than the wild type, suggesting that wild-type levels of phosphatidylcholine are required for full competitivity of Bradyrhizobium in symbiosis with peanut plants.


Assuntos
Arachis/microbiologia , Bradyrhizobium/citologia , Bradyrhizobium/fisiologia , Fosfatidilcolinas/análise , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Southern Blotting , Bradyrhizobium/química , Bradyrhizobium/isolamento & purificação , DNA Bacteriano/genética , Dosagem de Genes , Técnicas de Inativação de Genes , Locomoção , Metiltransferases/genética , Metiltransferases/metabolismo , Dados de Sequência Molecular , Análise de Sequência de DNA , Simbiose , Transferases (Outros Grupos de Fosfato Substituídos)/genética , Transferases (Outros Grupos de Fosfato Substituídos)/metabolismo , Virulência
10.
Curr Microbiol ; 54(1): 31-5, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17171469

RESUMO

Phospholipids provide the membrane with its barrier function and play a role in a variety of processes in the bacterial cell, as responding to environmental changes. The aim of the present study was to characterize the physiological and metabolic response of Bradyrhizobium SEMIA 6144 to saline and temperature stress. This study provides metabolic and compositional evidence that nodulating peanut Bradyrhizobium SEMIA 6144 is able to synthesize fatty acids, to incorporate them into its phospholipids (PL), and then modify them in response to stress conditions such as temperature and salinity. The fatty acids were formed from [1-(14)C]acetate and mostly incorporated in PL (95%). Phosphatidylcholine (PC), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), and cardiolipin (CL) were found to be the major phospholipids in the bacteria analyzed. The amount and the labeling of each individual PL was increased by NaCl, while they were decreased by temperature stress. The amount of PC, PE, and PG under the combined stresses decreased, as in the temperature effect. The results indicate that synthesized PL of Bradyrhizobium SEMIA 6144 are modified under the tested conditions. Because in all conditions tested the PC amount was always modified and PC was the major PL, we suggest that this PL may be involved in the bacteria response to environmental conditions.


Assuntos
Arachis/microbiologia , Bradyrhizobium/fisiologia , Fosfolipídeos/fisiologia , Cloreto de Sódio/análise , Arachis/fisiologia , Bradyrhizobium/química , Bradyrhizobium/crescimento & desenvolvimento , Ácidos Graxos/análise , Ácidos Graxos/biossíntese , Fosfolipídeos/química , Simbiose , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...