Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 5131, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37612271

RESUMO

The possibility to detect and analyze single or few biological molecules is very important for understanding interactions and reaction mechanisms. Ideally, the molecules should be confined to a nanoscale volume so that the observation time by optical methods can be extended. However, it has proven difficult to develop reliable, non-invasive trapping techniques for biomolecules under physiological conditions. Here we present a platform for long-term tether-free (solution phase) trapping of proteins without exposing them to any field gradient forces. We show that a responsive polymer brush can make solid state nanopores switch between a fully open and a fully closed state with respect to proteins, while always allowing the passage of solvent, ions and small molecules. This makes it possible to trap a very high number of proteins (500-1000) inside nanoscale chambers as small as one attoliter, reaching concentrations up to 60 gL-1. Our method is fully compatible with parallelization by imaging arrays of nanochambers. Additionally, we show that enzymatic cascade reactions can be performed with multiple native enzymes under full nanoscale confinement and steady supply of reactants. This platform will greatly extend the possibilities to optically analyze interactions involving multiple proteins, such as the dynamics of oligomerization events.


Assuntos
Nanoporos , Polímeros , Substâncias Macromoleculares , Ligante de CD40 , Solventes
2.
Nanoscale Adv ; 4(23): 4925-4937, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36504753

RESUMO

The nuclear pore complex is a nanoscale assembly that achieves shuttle-cargo transport of biomolecules: a certain cargo molecule can only pass the barrier if it is attached to a shuttle molecule. In this review we summarize the most important efforts aiming to reproduce this feature in artificial settings. This can be achieved by solid state nanopores that have been functionalized with the most important proteins found in the biological system. Alternatively, the nanopores are chemically modified with synthetic polymers. However, only a few studies have demonstrated a shuttle-cargo transport mechanism and due to cargo leakage, the selectivity is not comparable to that of the biological system. Other recent approaches are based on DNA origami, though biomolecule transport has not yet been studied with these. The highest selectivity has been achieved with macroscopic gels, but they are yet to be scaled down to nano-dimensions. It is concluded that although several interesting studies exist, we are still far from achieving selective and efficient artificial shuttle-cargo transport of biomolecules. Besides being of fundamental interest, such a system could be potentially useful in bioanalytical devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...