Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(6): e0268388, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35704567

RESUMO

BACKGROUND: Adults are being vaccinated against SARS-CoV-2 worldwide, but the longitudinal protection of these vaccines is uncertain, given the ongoing appearance of SARS-CoV-2 variants. Children remain largely unvaccinated and are susceptible to infection, with studies reporting that they actively transmit the virus even when asymptomatic, thus affecting the community. METHODS: We investigated if saliva is an effective sample for detecting SARS-CoV-2 RNA and antibodies in children, and associated viral RNA levels to infectivity. For that, we used a saliva-based SARS-CoV-2 RT-qPCR test, preceded or not by RNA extraction, in 85 children aged 10 years and under, admitted to the hospital regardless of COVID-19 symptomatology. Amongst these, 29 (63.0%) presented at least one COVID-19 symptom, 46 (54.1%) were positive for SARS-CoV-2 infection, 28 (32.9%) were under the age of 1, and the mean (SD) age was 3.8 (3.4) years. Saliva samples were collected up to 48 h after a nasopharyngeal swab-RT-qPCR test. RESULTS: In children aged 10 years and under, the sensitivity, specificity, and accuracy of saliva-RT-qPCR tests compared to NP swab-RT-qPCR were, respectively, 84.8% (71.8%-92.4%), 100% (91.0%-100%), and 91.8% (84.0%-96.6%) with RNA extraction, and 81.8% (68.0%-90.5%), 100% (91.0%-100%), and 90.4% (82.1%-95.0%) without RNA extraction. Rescue of infectious particles from saliva was limited to CT values below 26. In addition, we found significant IgM positive responses to SARS-CoV-2 in children positive for SARS-CoV-2 by NP swab and negative by saliva compared to other groups, indicating late infection onset (>7-10 days). CONCLUSIONS: Saliva is a suitable sample type for diagnosing children aged 10 years and under, including infants aged <1 year, even bypassing RNA extraction methods. Importantly, the detected viral RNA levels were significantly above the infectivity threshold in several samples. Further investigation is required to correlate SARS-CoV-2 RNA levels to viral transmission.


Assuntos
COVID-19 , SARS-CoV-2 , Adulto , COVID-19/diagnóstico , Teste para COVID-19 , Criança , Técnicas de Laboratório Clínico/métodos , Humanos , Técnicas de Diagnóstico Molecular , Nasofaringe , RNA Viral/análise , RNA Viral/genética , SARS-CoV-2/genética , Saliva/química , Manejo de Espécimes/métodos
2.
PLoS Pathog ; 17(8): e1009772, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34352039

RESUMO

Understanding SARS-CoV-2 evolution and host immunity is critical to control COVID-19 pandemics. At the core is an arms-race between SARS-CoV-2 antibody and angiotensin-converting enzyme 2 (ACE2) recognition, a function of the viral protein spike. Mutations in spike impacting antibody and/or ACE2 binding are appearing worldwide, imposing the need to monitor SARS-CoV2 evolution and dynamics in the population. Determining signatures in SARS-CoV-2 that render the virus resistant to neutralizing antibodies is critical. We engineered 25 spike-pseudotyped lentiviruses containing individual and combined mutations in the spike protein, including all defining mutations in the variants of concern, to identify the effect of single and synergic amino acid substitutions in promoting immune escape. We confirmed that E484K evades antibody neutralization elicited by infection or vaccination, a capacity augmented when complemented by K417N and N501Y mutations. In silico analysis provided an explanation for E484K immune evasion. E484 frequently engages in interactions with antibodies but not with ACE2. Importantly, we identified a novel amino acid of concern, S494, which shares a similar pattern. Using the already circulating mutation S494P, we found that it reduces antibody neutralization of convalescent and post-immunization sera, particularly when combined with E484K and with mutations able to increase binding to ACE2, such as N501Y. Our analysis of synergic mutations provides a signature for hotspots for immune evasion and for targets of therapies, vaccines and diagnostics.


Assuntos
Anticorpos Neutralizantes/imunologia , COVID-19/virologia , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Substituição de Aminoácidos/genética , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/imunologia , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Linhagem Celular , Humanos , Evasão da Resposta Imune , Mutação/genética , Ligação Proteica , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...