Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Viruses ; 16(4)2024 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-38675847

RESUMO

Ticks are the main arthropod vector of pathogens to humans and livestock in the British Isles. Despite their role as a vector of disease, many aspects of tick biology, ecology, and microbial association are poorly understood. To address this, we investigated the composition of the microbiome of adult and nymphal Ixodes ricinus ticks. The ticks were collected on a dairy farm in Southwest England and RNA extracted for whole genome sequencing. Sequences were detected from a range of microorganisms, particularly tick-associated viruses, bacteria, and nematodes. A majority of the viruses were attributed to phlebo-like and nairo-like virus groups, demonstrating a high degree of homology with the sequences present in I. ricinus from mainland Europe. A virus sharing a high sequence identity with Chimay rhabdovirus, previously identified in ticks from Belgium, was detected. Further investigations of I. ricinus ticks collected from additional sites in England and Wales also identified Chimay rhabdovirus viral RNA with varying prevalence in all tick populations. This suggests that Chimay rhabdovirus has a wide distribution and highlights the need for an extended exploration of the tick microbiome in the United Kingdom (UK).


Assuntos
Ixodes , Filogenia , Rhabdoviridae , Animais , Ixodes/virologia , Ixodes/microbiologia , Inglaterra , País de Gales , Rhabdoviridae/genética , Rhabdoviridae/classificação , Rhabdoviridae/isolamento & purificação , Genoma Viral , RNA Viral/genética , Microbiota , Sequenciamento Completo do Genoma , Ninfa/virologia , Ninfa/microbiologia
2.
Parasit Vectors ; 17(1): 61, 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38342888

RESUMO

BACKGROUND: Usutu virus (USUV), which is closely related to West Nile virus (WNV), sharing a similar ecology and transmission cycle, was first reported in the UK in the southeast of England in 2020. Both USUV and WNV are emerging zoonotic viruses hosted by wild birds. The 2020 finding of USUV in England raised awareness of this virus and highlighted the importance of understanding the seasonality of Culex pipiens sensu lato (Cx. pipiens s.l.), the main enzootic vector of these viruses. Zoos are prime locations for trapping mosquitoes because of their infrastructure, security, and range of vertebrate hosts and aquatic habitats. METHODS: Three independent zoo-based case studies at four locations that cover the seasonality of Cx. pipiens s.l. in England were undertaken: (i) London Zoo (Zoological Society London [ZSL]) and surrounding areas, London; (ii) Chester Zoo (Cheshire); (ii) Twycross Zoo (Leicestershire); and (iv) Flamingo Land (zoo; North Yorkshire). Various adult mosquito traps were used to catch adult Cx. pipiens s.l. across seasons. RESULTS: High yields of Cx. pipiens s.l./Culex torrentium were observed in Biogents-Mosquitaire and Center for Disease Control and Prevention Gravid traps in all studies where these traps were used. Mosquito counts varied between sites and between years. Observations of adult Cx. pipiens s.l./Cx. torrentium abundance and modelling studies demonstrated peak adult abundance between late July and early August, with active adult female Cx. pipiens s.l./Cx. torrentium populations between May and September. CONCLUSIONS: The information collated in this study illustrates the value of multiple mosquito monitoring approaches in zoos to describe the seasonality of this UK vector across multiple sites in England and provides a framework that can be used for ongoing and future surveillance programmes and disease risk management strategies.


Assuntos
Culex , Culicidae , Flavivirus , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Feminino , Animais , Mosquitos Vetores , Inglaterra
3.
Parasit Vectors ; 17(1): 29, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254168

RESUMO

BACKGROUND: Ticks are an important driver of veterinary health care, causing irritation and sometimes infection to their hosts. We explored epidemiological and geo-referenced data from > 7 million electronic health records (EHRs) from cats and dogs collected by the Small Animal Veterinary Surveillance Network (SAVSNET) in Great Britain (GB) between 2014 and 2021 to assess the factors affecting tick attachment in an individual and at a spatiotemporal level. METHODS: EHRs in which ticks were mentioned were identified by text mining; domain experts confirmed those with ticks on the animal. Tick presence/absence records were overlaid with a spatiotemporal series of climate, environment, anthropogenic and host distribution factors to produce a spatiotemporal regression matrix. An ensemble machine learning spatiotemporal model was used to fine-tune hyperparameters for Random Forest, Gradient-boosted Trees and Generalized Linear Model regression algorithms, which were then used to produce a final ensemble meta-learner to predict the probability of tick attachment across GB at a monthly interval and averaged long-term through 2014-2021 at a spatial resolution of 1 km. Individual host factors associated with tick attachment were also assessed by conditional logistic regression on a matched case-control dataset. RESULTS: In total, 11,741 consultations were identified in which a tick was recorded. The frequency of tick records was low (0.16% EHRs), suggesting an underestimation of risk. That said, increased odds for tick attachment in cats and dogs were associated with younger adult ages, longer coat length, crossbreeds and unclassified breeds. In cats, males and entire animals had significantly increased odds of recorded tick attachment. The key variables controlling the spatiotemporal risk for tick attachment were climatic (precipitation and temperature) and vegetation type (Enhanced Vegetation Index). Suitable areas for tick attachment were predicted across GB, especially in forests and grassland areas, mainly during summer, particularly in June. CONCLUSIONS: Our results can inform targeted health messages to owners and veterinary practitioners, identifying those animals, seasons and areas of higher risk for tick attachment and allowing for more tailored prophylaxis to reduce tick burden, inappropriate parasiticide treatment and potentially TBDs in companion animals and humans. Sentinel networks like SAVSNET represent a novel complementary data source to improve our understanding of tick attachment risk for companion animals and as a proxy of risk to humans.


Assuntos
Algoritmos , Animais de Estimação , Adulto , Humanos , Masculino , Gatos , Animais , Cães , Feminino , Reino Unido/epidemiologia , Fatores de Risco , Análise Espaço-Temporal
4.
Ticks Tick Borne Dis ; 15(1): 102291, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38061320

RESUMO

Babesiosis, a disease in humans and animals is caused by piroplasms from the genus Babesia and is transmitted by ixodid ticks. Bovine babesiosis, commonly called redwater fever, is reported in cattle from many regions of the British Isles. The presence of Babesia in questing ticks in the United Kingdom (UK) and its potential impact on public and animal health has not been widely studied. Therefore, this study aimed to assess the presence of Babesia spp. in England and Wales using ticks collected over a six-year period. Questing Ixodes ricinus nymphs were collected at 20 recreational areas between 2014 and 2019 and screened for Babesia. Of 3912 nymphs tested, Babesia spp. were detected in 15, giving an overall prevalence of 0.38% [95%CI: 0.21-0.63%]. A number of Babesia species were identified including B. venatorum (n = 9), B. divergens/capreoli (n = 5) and B. odocoilei-like species (n = 1). Based on the low prevalence of Babesia detected in questing I. ricinus nymphs in the recreational areas studied, the likelihood of exposure to Babesia-infected ticks is lower compared to other pathogens more widely studied in the UK (e.g. Borrelia burgdorferi s.l.). However, localized areas of elevated risk may occur in pockets in England and Wales.


Assuntos
Babesia , Babesiose , Ixodes , Animais , Humanos , Bovinos , Babesiose/epidemiologia , País de Gales/epidemiologia , Inglaterra/epidemiologia , Ninfa
5.
Pathogens ; 12(8)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37623989

RESUMO

Anaplasma phagocytophilum (A. phagocytophilum) is the aetiological agent of tick-borne fever in cattle and sheep, and granulocytic anaplasmosis in human and dogs. Livestock, companion animal and human infections with A. phagocytophilum have been reported globally. Across England and Wales, two isolates (called ecotypes) have been reported in ticks. This study examined A. phagocytophilum isolates present in livestock and wildlife in Great Britain (GB), with a particular focus on cattle. Clinical submissions (EDTA blood) from cattle (n = 21) and sheep (n = 3) were received by APHA for tick-borne disease testing and the animals were confirmed to be infected with A. phagocytophilum using a PCR targeting the Msp2 gene. Further submissions from roe deer (n = 2), red deer (n = 2) and Ixodes ricinus ticks (n = 22) were also shown to be infected with A. phagocytophilum. Subsequent analysis using a nested PCR targeting the groEL gene and sequencing confirmed the presence of ecotype I in cattle, sheep, red deer and Ixodes ricinus, and ecotype II in roe deer and I. ricinus removed from deer carcasses. Despite the presence of two ecotypes, widely distributed in ticks from England and Wales, only ecotype I was detected in cattle in this study.

6.
Euro Surveill ; 28(26)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37382886

RESUMO

BackgroundArthropod vectors such as ticks, mosquitoes, sandflies and biting midges are of public and veterinary health significance because of the pathogens they can transmit. Understanding their distributions is a key means of assessing risk. VectorNet maps their distribution in the EU and surrounding areas.AimWe aim to describe the methodology underlying VectorNet maps, encourage standardisation and evaluate output.Methods: Vector distribution and surveillance activity data have been collected since 2010 from a combination of literature searches, field-survey data by entomologist volunteers via a network facilitated for each participating country and expert validation. Data were collated by VectorNet members and extensively validated during data entry and mapping processes.ResultsAs of 2021, the VectorNet archive consisted of ca 475,000 records relating to > 330 species. Maps for 42 species are routinely produced online at subnational administrative unit resolution. On VectorNet maps, there are relatively few areas where surveillance has been recorded but there are no distribution data. Comparison with other continental databases, namely the Global Biodiversity Information Facility and VectorBase show that VectorNet has 5-10 times as many records overall, although three species are better represented in the other databases. In addition, VectorNet maps show where species are absent. VectorNet's impact as assessed by citations (ca 60 per year) and web statistics (58,000 views) is substantial and its maps are widely used as reference material by professionals and the public.ConclusionVectorNet maps are the pre-eminent source of rigorously validated arthropod vector maps for Europe and its surrounding areas.


Assuntos
Artrópodes , Humanos , Animais , Mosquitos Vetores , Vetores de Doenças , Vetores Artrópodes , Europa (Continente)/epidemiologia
7.
Zoonoses Public Health ; 70(5): 371-382, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37128975

RESUMO

Tahyna virus (TAHV) is an orthobunyavirus and was the first arbovirus isolated from mosquitoes in Europe and is associated with floodplain areas as a characteristic biotope, hares as reservoir hosts and the mammal-feeding mosquitoes Aedes vexans as the main vector. The disease caused by TAHV ("Valtice fever") was detected in people with acute flu-like illness in the 1960s, and later the medical significance of TAHV became the subject of many studies. Although TAHV infections are widespread, the prevalence and number of actual cases, clinical manifestations in humans and animals and the ecology of transmission by mosquitoes and their vertebrate hosts are rarely reported. Despite its association with meningitis in humans, TAHV is a neglected human pathogen with unknown public health importance in Central Europe, and a potential emerging disease threat elsewhere in Europe due to extreme summer flooding events.


Assuntos
Aedes , Arbovírus , Vírus da Encefalite da Califórnia , Humanos , Animais , Mosquitos Vetores , Europa (Continente)/epidemiologia , Mamíferos
8.
Ticks Tick Borne Dis ; 14(2): 102112, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36634470

RESUMO

Hyalomma marginatum is the main vector of Crimean-Congo haemorrhagic fever virus (CCHFV) and spotted fever rickettsiae in Europe. The distribution of H. marginatum is currently restricted to parts of southern Europe, northern Africa and Asia, and one of the drivers limiting distribution is climate, particularly temperature. As temperatures rise with climate change, parts of northern Europe currently considered too cold for H. marginatum to be able to survive may become suitable, including the United Kingdom (UK), presenting a potential public health concern. Here we use a series of modelling methodologies to understand whether mean air temperatures across the UK during 2000-2019 were sufficient for H. marginatum nymphs to moult into adult stages and be able to overwinter in the UK if they were introduced on migratory birds. We then used UK-specific climate projections (UKCP18) to determine whether predicted temperatures would be sufficient to allow survival in future. We found that spring temperatures in parts of the UK during 2000-2019 were warm enough for predicted moulting to occur, but in all years except 2006, temperatures during September to December were too cold for overwintering to occur. Our analysis of the projections data suggests that whilst temperatures in the UK during September to December will increase in future, they are likely to remain below the threshold required for H. marginatum populations to become established.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Ixodidae , Animais , Temperatura , Reino Unido , Europa (Continente) , Febre Hemorrágica da Crimeia/veterinária
9.
Zoonoses Public Health ; 70(4): 304-314, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36660965

RESUMO

Ticks are found across a range of habitats, with woodland being particularly important for high densities and prevalence of Borrelia infection. Assessments of risk in urban woodland can be difficult if there are low densities and small sample sizes for Borrelia prevalence estimates. This study targeted six urban woodlands with established tick populations, as well as six woodlands in peri-urban zones and six woodlands in rural zones in and around the cities of Bath and Southampton, in the South of England. Nymph densities were estimated, and 100 nymphs were tested from each of the 18 woodlands studied. Ixodes ricinus ticks were found in all woodlands surveyed, and overall density of nymphs (DON) per 100 m2 was 18.17 in urban woodlands, 26.0 in peri-urban woodlands and 17.67 in rural woodlands. Out of 600 nymphs tested across urban woodlands, 10.3% were infected with Borrelia. The same proportion of nymphs collected in rural woodlands were positive for Borrelia. In peri-urban woodlands, 10.8% of nymphs tested positive. Across both cities combined, density of infected nymphs (DIN) was 2.73 per 100 m2 in peri-urban woodland, 1.87 per 100 m2 in urban woodland and 1.82 per 100 m2 in rural woodland. Overall, DON, Borrelia prevalence and DIN did not differ significantly along an urban-rural gradient. This suggests the risk of Lyme borreliosis transmission could be similar, or perhaps even elevated in urban woodland if there is higher public footfall, subsequent contact with ticks and less awareness of the risks. This is particularly important from a public health perspective, as Borrelia garinii dominated across the gradient and this genospecies is linked to neuroborreliosis.


Assuntos
Borrelia , Ixodes , Doença de Lyme , Animais , Prevalência , Doença de Lyme/epidemiologia , Doença de Lyme/veterinária , Ecossistema , Ninfa
10.
Ticks Tick Borne Dis ; 14(2): 102103, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36525762

RESUMO

Understanding the effects of local habitat and wider landscape connectivity factors on tick presence, nymph density and Borrelia species (spp.) prevalence in the tick population is important for identifying the public health risk from Lyme borreliosis. This multi-city study collected data in three southern England cities (Bath, Bristol, and Southampton) during spring, summer, and autumn in 2017. Focusing specifically on urban green space used for recreation which were clearly in urbanised areas, 72 locations were sampled. Additionally, geospatial datasets on urban green space coverage within 250 m and 1 km of sampling points, as well as distance to woodland were incorporated into statistical models. Distance to woodland was negatively associated with tick presence and nymph density, particularly during spring and summer. Furthermore, we observed an interaction effect between habitat and season for tick presence and nymph density, with woodland habitat having greater tick presence and nymph density during spring. Borrelia spp. infected Ixodes ricinus were found in woodland, woodland edge and under canopy habitats in Bath and Southampton. Overall Borrelia spp. prevalence in nymphs was 2.8%, similar to wider UK studies assessing prevalence in Ixodes ricinus in rural areas. Bird-related Borrelia genospecies dominated across sites, suggesting bird reservoir hosts may be important in urban green space settings for feeding and infecting ticks. Whilst overall density of infected nymphs across the three cities was low (0.03 per 100 m2), risk should be further investigated by incorporating data on tick bites acquired in urban settings, and subsequent Lyme borreliosis transmission.


Assuntos
Borrelia , Ixodes , Doença de Lyme , Animais , Humanos , Cidades , Parques Recreativos , Estações do Ano , Doença de Lyme/epidemiologia , Ecossistema , Ninfa
11.
Med Vet Entomol ; 37(1): 96-104, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36239468

RESUMO

The tick Ixodes ricinus (Ixodida: Ixodidae, Linnaeus) is the main vector of several pathogens including Borrelia burgdorferi s.l. (agent of Lyme borreliosis) and tick-borne encephalitis virus. Its distribution depends on many factors including suitable habitat, climate and presence of hosts. In this study, we present records of I. ricinus bites on humans, dogs (Canis lupus familiaris; Carnivora: Canidae, L.) and cats (Felis catus; Carnivora: Felidiae, L.) in the United Kingdom (UK) obtained through the Tick Surveillance Scheme between 2013 and 2020. We divided the UK into 20 km x 20 km grids and 9.2% (range 1.2%-30%) of grids had at least one record every year since 2013. Most regions reported a yearly increase in the percentage of grids reporting I. ricinus since 2013 and the highest changes occurred in the South and East England with 5%-6.7% of new grids reporting I. ricinus bites each year in areas that never reported ticks before. Spatiotemporal analyses suggested that, while all regions recorded I. ricinus in new areas every year, there was a yearly decline in the percentage of new areas covered, except for Scotland. We discuss potential drivers of tick expansion, including reforestation and increase in deer populations.


Assuntos
Borrelia burgdorferi , Canidae , Doenças do Gato , Cervos , Doenças do Cão , Ixodes , Doença de Lyme , Animais , Humanos , Gatos , Cães , Doença de Lyme/epidemiologia , Doença de Lyme/veterinária , Reino Unido
12.
Med Vet Entomol ; 37(1): 152-163, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36309852

RESUMO

Tick-borne disease risk is intrinsically linked to the distribution of tick vector species. To assess risk and anticipate disease emergence, an understanding of tick distribution, host associations, and seasonality is needed. This can be achieved, to some extent, using passive surveillance supported by engagement with the public, animal health, and public health experts. The Tick Surveillance Scheme (TSS) collects data and maps tick distribution across the United Kingdom (UK). Between 2017 and 2020, 3720 tick records were received and 39 tick species were detected. Most records were acquired in the UK, with a subset associated with recent overseas travel. The dominant UK acquired species was Ixodes ricinus (Ixodida: Ixodidae, Linnaeus), the main vector of Lyme borreliosis. Records peaked during May and June, highlighting a key risk period for tick bites. Other key UK species were detected, including Dermacentor reticulatus (Ixodida: Ixodidae, Fabricius) and Haemaphysalis punctata (Ixodida: Ixodidae, Canestrini & Fanzago) as well as several rarer species that may present novel tick-borne disease risk to humans and other animals. Updated tick distribution maps highlight areas in the UK where tick exposure has occurred. There is evidence of increasing human tick exposure over time, including during the COVID-19 pandemic, but seasonal patterns remain unchanged.


Assuntos
COVID-19 , Ixodes , Ixodidae , Infestações por Carrapato , Doenças Transmitidas por Carrapatos , Humanos , Animais , Pandemias , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/veterinária , COVID-19/epidemiologia , COVID-19/veterinária , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/veterinária , Reino Unido/epidemiologia
13.
Transbound Emerg Dis ; 69(6): 3684-3692, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36217722

RESUMO

Usutu virus (USUV) is an emerging zoonotic arbovirus in Europe, where it primarily impacts Eurasian blackbirds (Turdus merula). For mosquito-borne viruses to persist in temperate areas, transovarial transmission in vectors or overwintering in either hosts or diapausing vectors must occur to facilitate autochthonous transmission. We undertook surveillance of hosts and vectors in 2021 to elucidate whether USUV had overwintered in the United Kingdom (UK) following its initial detection there in 2020. From 175 dead bird submissions, we detected 1 case of USUV infection, in a blackbird, from which a full USUV genome was derived. Using a molecular clock analysis, we demonstrate that the 2021 detection shared a most recent common ancestor with the 2020 Greater London, UK, USUV sequence. In addition, we identified USUV-specific neutralizing antibodies in 10 out of 86 serum samples taken from captive birds at the index site, demonstrating in situ cryptic infection and potential sustained transmission. However, from 4966 mosquitoes, we detected no USUV RNA suggesting that prevalence in the vector community was absent or low during sampling. Combined, these results suggest that USUV overwintered in the UK, thus providing empirical evidence for the continued northward expansion of this vector-borne viral disease. Currently, our detection indicates geographically restricted virus persistence. Further detections over time will be required to demonstrate long-term establishment. It remains unclear whether the UK, and by extension other high-latitude regions, can support endemic USUV infection.


Assuntos
Doenças das Aves , Infecções por Flavivirus , Flavivirus , Aves Canoras , Animais , Mosquitos Vetores , Flavivirus/genética , Infecções por Flavivirus/epidemiologia , Infecções por Flavivirus/veterinária , Reino Unido/epidemiologia
14.
Sci Rep ; 12(1): 10298, 2022 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-35717348

RESUMO

Following the first detection in the United Kingdom of Usutu virus (USUV) in wild birds in 2020, we undertook a multidisciplinary investigation that combined screening host and vector populations with interrogation of national citizen science monitoring datasets to assess the potential for population impacts on avian hosts. Pathological findings from six USUV-positive wild passerines were non-specific, highlighting the need for molecular and immunohistochemical examinations to confirm infection. Mosquito surveillance at the index site identified USUV RNA in Culex pipiens s.l. following the outbreak. Although the Eurasian blackbird (Turdus merula) is most frequently impacted by USUV in Europe, national syndromic surveillance failed to detect any increase in occurrence of clinical signs consistent with USUV infection in this species. Furthermore, there was no increase in recoveries of dead blackbirds marked by the national ringing scheme. However, there was regional clustering of blackbird disease incident reports centred near the index site in 2020 and a contemporaneous marked reduction in the frequency with which blackbirds were recorded in gardens in this area, consistent with a hypothesis of disease-mediated population decline. Combining results from multidisciplinary schemes, as we have done, in real-time offers a model for the detection and impact assessment of future disease emergence events.


Assuntos
Doenças das Aves , Infecções por Flavivirus , Flavivirus , Aves Canoras , Animais , Surtos de Doenças/veterinária , Flavivirus/genética , Infecções por Flavivirus/epidemiologia , Infecções por Flavivirus/veterinária , Mosquitos Vetores , Reino Unido/epidemiologia
15.
Artigo em Inglês | MEDLINE | ID: mdl-35627370

RESUMO

Where ticks are found, tick-borne diseases can present a threat to human and animal health. The aetiology of many of these important diseases, including Lyme disease, bovine babesiosis, tick-borne fever and louping ill, have been known for decades whilst others have only recently been documented in the United Kingdom (UK). Further threats such as the importation of exotic ticks through human activity or bird migration, combined with changes to either the habitat or climate could increase the risk of tick-borne disease persistence and transmission. Prevention of tick-borne diseases for the human population and animals (both livestock and companion) is dependent on a thorough understanding of where and when pathogen transmission occurs. This information can only be gained through surveillance that seeks to identify where tick populations are distributed, which pathogens are present within those populations, and the periods of the year when ticks are active. To achieve this, a variety of approaches can be applied to enhance knowledge utilising a diverse range of stakeholders (public health professionals and veterinarians through to citizen scientists). Without this information, the application of mitigation strategies to reduce pathogen transmission and impact is compromised and the ability to monitor the effects of climate change or landscape modification on the risk of tick-borne disease is more challenging. However, as with many public and animal health interventions, there needs to be a cost-benefit assessment on the most appropriate intervention applied. This review will assess the challenges of tick-borne diseases in the UK and argue for a cross-disciplinary approach to their surveillance and control.


Assuntos
Doença de Lyme , Saúde Única , Doenças Transmitidas por Carrapatos , Carrapatos , Animais , Doença de Lyme/epidemiologia , Doença de Lyme/prevenção & controle , Doenças Transmitidas por Carrapatos/epidemiologia , Reino Unido/epidemiologia
16.
Med Vet Entomol ; 36(3): 356-370, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35521893

RESUMO

The density of Borrelia burgdorferi-infected Ixodes ricinus nymphs (DIN) was investigated during 2013-2017 across a Lyme disease-endemic landscape in southern England. The density of nymphs (DON), nymph infection prevalence (NIP), and DIN varied across five different natural habitats, with the highest DIN in woodland edge and high biodiversity woodlands. DIN was significantly lower in scrub grassland compared to the woodland edge, with low DON and no evidence of infection in ticks in non-scrub grassland. Over the 5 years, DON, NIP and DIN were comparable within habitats, except in 2014, with NIP varying three-fold and DIN significantly lower compared to 2015-2017. Borrelia garinii was most common, with bird-associated Borrelia (B. garinii/valaisiana) accounting for ~70% of all typed sequences. Borrelia burgdorferi sensu stricto was more common than B. afzelii. Borrelia afzelii was more common in scrub grassland than woodland and absent in some years. The possible impact of scrub on grazed grassland, management of ecotonal woodland margins with public access, and the possible role of birds/gamebirds impacting NIP are discussed. Mean NIP was 7.6%, highlighting the potential risk posed by B. burgdorferi in this endemic area. There is a need for continued research to understand its complex ecology and identify strategies for minimizing risk to public health, through habitat/game management and public awareness.


Assuntos
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Borrelia , Ixodes , Doença de Lyme , Animais , Doença de Lyme/epidemiologia , Doença de Lyme/veterinária , Ninfa
17.
Ticks Tick Borne Dis ; 13(4): 101965, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35597188

RESUMO

Human granulocytic anaplasmosis and tick-borne fever, affecting livestock, are diseases caused by an infection with the bacterium Anaplasma phagocytophilum. Its transmission dynamics between vertebrate hosts and ticks remain largely unknown and the potential impact on public health in the United Kingdom is unclear. This study aimed to assess the distribution and estimate the prevalence of A. phagocytophilum in questing Ixodes ricinus at recreational locations across England and Wales over six years. An additional objective was to investigate possible associations between prevalence, habitat and presence of ruminant hosts. Ixodes ricinus ticks were collected each spring at 20 recreational locations across England and Wales between 2014 and 2019. Nymphs were tested for infection with A. phagocytophilum by detection of bacterial genome in DNA extracts, targeting the msp2 gene locus. Positive samples were further investigated for the presence of different ecotypes based on the GroEL region. Of 3,919 nymphs tested, the mean infection prevalence was 3.6% [95%CI: 3.1-4.3] and ranged from 0 to 20.4%. Northern England had a higher overall prevalence (4.7% [95%CI: 3.4-6.4]) compared to Southern England (1.8% [95%CI: 1.3-2.5]) and the presence of sheep was associated with higher A. phagocytophilum prevalence (8.4% [95%CI: 6.9-10.1] vs 1.2% [95%CI: 0.8-1.7] when absent). There was also a negative correlation with the prevalence of Borrelia burgdorferi s.l. (causing Lyme borreliosis). When investigating the diversity of A. phagocytophilum, ecotype I accounted for 86.8% of samples and ecotype II for 13.2%. Our study presents an overview of A. phagocytophilum prevalence in questing I. ricinus in recreational areas across England and Wales and discusses the potential public and veterinary health relevance.


Assuntos
Anaplasma phagocytophilum , Borrelia burgdorferi , Ixodes , Anaplasma phagocytophilum/genética , Animais , Borrelia burgdorferi/genética , Ixodes/microbiologia , Ninfa , Prevalência , Ovinos , País de Gales/epidemiologia
18.
Front Public Health ; 10: 809763, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35444989

RESUMO

Public and animal health authorities face many challenges in surveillance and control of vector-borne diseases. Those challenges are principally due to the multitude of interactions between vertebrate hosts, pathogens, and vectors in continuously changing environments. VectorNet, a joint project of the European Food Safety Authority (EFSA) and the European Centre for Disease Prevention and Control (ECDC) facilitates risk assessments of VBD threats through the collection, mapping and sharing of distribution data for ticks, mosquitoes, sand flies, and biting midges that are vectors of pathogens of importance to animal and/or human health in Europe. We describe the development and maintenance of this One Health network that celebrated its 10th anniversary in 2020 and the value of its most tangible outputs, the vector distribution maps, that are freely available online and its raw data on request. VectorNet encourages usage of these maps by health professionals and participation, sharing and usage of the raw data by the network and other experts in the science community. For the latter, a more complete technical description of the mapping procedure will be submitted elsewhere.


Assuntos
Vetores de Doenças , Animais , Europa (Continente)/epidemiologia
19.
Zoonoses Public Health ; 69(3): 153-166, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35122422

RESUMO

For more than three decades, it has been recognized that Ixodes ricinus ticks occur in urban green space in Europe and that they harbour multiple pathogens linked to both human and animal diseases. Urban green space use for health and well-being, climate mitigation or biodiversity goals is promoted, often without consideration for the potential impact on tick encounters or tick-borne disease outcomes. This review synthesizes the results of over 100 publications on questing I. ricinus and Borrelia spp. infections in ticks in urban green space in 24 European countries. It presents data on several risk indicators for Lyme borreliosis and highlights key research gaps and recommendations for future studies. Across Europe, mean density of I. ricinus in urban green space was 6.9 (range; 0.1-28.8) per 100 m2 and mean Borrelia prevalence was 17.3% (range; 3.1%-38.1%). Similar density estimates were obtained for nymphs, which had a Borrelia prevalence of 14.2% (range; 0.5%-86.7%). Few studies provided data on both questing nymph density and Borrelia prevalence, but those that did found an average of 1.7 (range; 0-5.6) Borrelia-infected nymphs per 100 m2 of urban green space. Although a wide range of genospecies were reported, Borrelia afzelii was the most common in most parts of Europe, except for England where B. garinii was more common. The emerging pathogen Borrelia miyamotoi was also found in several countries, but with a much lower prevalence (1.5%). Our review highlights that I. ricinus and tick-borne Borrelia pathogens are found in a wide range of urban green space habitats and across several seasons. The impact of human exposure to I. ricinus and subsequent Lyme borreliosis incidence in urban green space has not been quantified. There is also a need to standardize sampling protocols to generate better baseline data for the density of ticks and Borrelia prevalence in urban areas.


Assuntos
Borrelia , Ixodes , Doença de Lyme , Animais , Europa (Continente)/epidemiologia , Doença de Lyme/epidemiologia , Doença de Lyme/veterinária , Ninfa , Parques Recreativos
20.
Microb Ecol ; 84(2): 613-626, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34580739

RESUMO

Rickettsiella species are bacterial symbionts that are present in a great variety of arthropod species, including ixodid ticks. However, little is known about their genetic diversity and distribution in Ixodes ricinus, as well as their relationship with other tick-associated bacteria. In this study, we investigated the occurrence and the genetic diversity of Rickettsiella spp. in I. ricinus throughout Europe and evaluated any preferential and antagonistic associations with Candidatus Midichloria mitochondrii and the pathogens Borrelia burgdorferi sensu lato and Borrelia miyamotoi. Rickettsiella spp. were detected in most I. ricinus populations investigated, encompassing a wide array of climate types and environments. The infection prevalence significantly differed between geographic locations and was significantly higher in adults than in immature life stages. Phylogenetic investigations and protein characterization disclosed four Rickettsiella clades (I-IV). Close phylogenetic relations were observed between Rickettsiella strains of I. ricinus and other arthropod species. Isolation patterns were detected for Clades II and IV, which were restricted to specific geographic areas. Lastly, although coinfections occurred, we did not detect significant associations between Rickettsiella spp. and the other tick-associated bacteria investigated. Our results suggest that Rickettsiella spp. are a genetically and biologically diverse facultative symbiont of I. ricinus and that their distribution among tick populations could be influenced by environmental components.


Assuntos
Coxiellaceae , Ixodes , Animais , Europa (Continente) , Variação Genética , Ixodes/microbiologia , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...