Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(27): eadl5822, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38959317

RESUMO

The importance of phosphorus (P) in regulating ecosystem responses to climate change has fostered P-cycle implementation in land surface models, but their CO2 effects predictions have not been evaluated against measurements. Here, we perform a data-driven model evaluation where simulations of eight widely used P-enabled models were confronted with observations from a long-term free-air CO2 enrichment experiment in a mature, P-limited Eucalyptus forest. We show that most models predicted the correct sign and magnitude of the CO2 effect on ecosystem carbon (C) sequestration, but they generally overestimated the effects on plant C uptake and growth. We identify leaf-to-canopy scaling of photosynthesis, plant tissue stoichiometry, plant belowground C allocation, and the subsequent consequences for plant-microbial interaction as key areas in which models of ecosystem C-P interaction can be improved. Together, this data-model intercomparison reveals data-driven insights into the performance and functionality of P-enabled models and adds to the existing evidence that the global CO2-driven carbon sink is overestimated by models.


Assuntos
Ciclo do Carbono , Dióxido de Carbono , Eucalyptus , Florestas , Fósforo , Eucalyptus/metabolismo , Dióxido de Carbono/metabolismo , Fósforo/metabolismo , Fotossíntese , Mudança Climática , Ecossistema , Carbono/metabolismo , Modelos Teóricos , Sequestro de Carbono
2.
Nature ; 630(8017): 660-665, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38839955

RESUMO

The capacity for terrestrial ecosystems to sequester additional carbon (C) with rising CO2 concentrations depends on soil nutrient availability1,2. Previous evidence suggested that mature forests growing on phosphorus (P)-deprived soils had limited capacity to sequester extra biomass under elevated CO2 (refs. 3-6), but uncertainty about ecosystem P cycling and its CO2 response represents a crucial bottleneck for mechanistic prediction of the land C sink under climate change7. Here, by compiling the first comprehensive P budget for a P-limited mature forest exposed to elevated CO2, we show a high likelihood that P captured by soil microorganisms constrains ecosystem P recycling and availability for plant uptake. Trees used P efficiently, but microbial pre-emption of mineralized soil P seemed to limit the capacity of trees for increased P uptake and assimilation under elevated CO2 and, therefore, their capacity to sequester extra C. Plant strategies to stimulate microbial P cycling and plant P uptake, such as increasing rhizosphere C release to soil, will probably be necessary for P-limited forests to increase C capture into new biomass. Our results identify the key mechanisms by which P availability limits CO2 fertilization of tree growth and will guide the development of Earth system models to predict future long-term C storage.


Assuntos
Dióxido de Carbono , Sequestro de Carbono , Florestas , Fósforo , Microbiologia do Solo , Árvores , Biomassa , Dióxido de Carbono/metabolismo , Dióxido de Carbono/análise , Fósforo/metabolismo , Rizosfera , Solo/química , Árvores/crescimento & desenvolvimento , Árvores/metabolismo , Mudança Climática
3.
Ecol Evol ; 14(6): e11517, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38895582

RESUMO

Understanding the biophysical limitations on forest carbon across diverse ecological regions is crucial for accurately assessing and managing forest carbon stocks. This study investigates the role of climate and disturbance on the spatial variation of two key forest carbon pools: aboveground carbon (AGC) and soil organic carbon (SOC). Using plot-level carbon pool estimates from Nepal's national forest inventory and structural equation modelling, we explore the relationship of forest carbon stocks to broad-scale climatic water and energy availability and fine-scale terrain and disturbance. The forest AGC and SOC models explained 25% and 59% of the observed spatial variation in forest AGC and SOC, respectively. Among the evaluated variables, disturbance exhibited the strongest negative correlation with AGC, while the availability of climatic energy demonstrated the strongest negative correlation with SOC. Disturbances such as selective logging and firewood collection result in immediate forest carbon loss, while soil carbon changes take longer to respond. The lower decomposition rates in the high-elevation region, due to lower temperatures, preserve organic matter and contribute to the high SOC stocks observed there. These results highlight the critical role of climate and disturbance regimes in shaping landscape patterns of forest carbon stocks. Understanding the underlying drivers of these patterns is crucial for forest carbon management and conservation across diverse ecological zones including the Central Himalayas.

4.
Tree Physiol ; 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498322

RESUMO

Allocation of non-structural carbohydrates (NSC) to storage allows plants to maintain a carbon pool in anticipation of future stress. However, to do so, plants must forego use of the carbon for growth, creating a trade-off between storage and growth. It is possible that plants actively regulate the storage pool to maximise fitness in a stress-prone environment. Here, we attempt to identify the patterns of growth and storage that would result during drought stress under the hypothesis that plants actively regulate carbon storage. We use optimal control theory to calculate the optimal allocation to storage and utilisation of stored carbon over a single drought stress period. We examine two fitness objectives representing alternative life strategies: prioritisation of growth (MaxM) and prioritisation of storage (MaxS), as well as strategies in between these extremes. We find that optimal carbon storage consists of three discrete phases: 'growth', 'storage without growth', and the 'stress' phase where there is no carbon source. This trajectory can be defined by the time point when the plant switches from growth to storage. Growth-prioritising plants switch later and fully deplete their stored carbon over the stress period, while storage-prioritising plants either do not grow or switch early in the drought period. The switch time almost always occurs before soil water is depleted, meaning that growth stops before photosynthesis. We conclude that the common observation of increasing carbon storage during drought could be interpreted as an active process that optimises plant performance during stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA