Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Ecol ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867406

RESUMO

Climate change is impacting ecosystems worldwide, and the Mediterranean Sea is no exception. Extreme climatic events, such as marine heat waves (MHWs), are increasing in frequency, extent and intensity during the last decades, which has been associated with an increase in mass mortality events for multiple species. Coralligenous assemblages, where the octocoral Paramuricea clavata lives, are strongly affected by MHWs. The Medes Islands Marine Reserve (NW Mediterranean) was considered a climate refugia for P. clavata, as their populations were showing some resilience to these changing conditions. In this study, we assessed the impacts of the MHWs that occurred between 2016 and 2022 in seven shallow populations of the octocoral P. clavata from a Mediterranean Marine Protected Area. The years that the mortality rates increased significantly were associated with the ones with strong MHWs, 2022 being the one with higher mortalities. In 2022, with 50 MHW days, the proportion of total affected colonies was almost 70%, with a proportion of the injured surface of almost 40%, reaching levels never attained in our study site since the monitoring was started. We also found spatial variability between the monitored populations. Whereas few of them showed low levels of mortality, others lost around 75% of their biomass. The significant impacts documented here raise concerns about the future of shallow P. clavata populations across the Mediterranean, suggesting that the resilience of this species may not be maintained to sustain these populations face the ongoing warming trends.


El canvi climatic està impactant els ecosistemes arreu del planeta, i el Mar Mediterrani no n'és una excepció. Els esdeveniments climàtics extrems, com ara les onades de calor marines, estan augmentant en freqüència, extensió i intensitat en les darreres dècades, i estan sent associades a un increment dels esdeveniments de mortalitat massiva de múltiples espècies. El coral·ligen, on hi viu l'octocorall Paramuricea clavata, està altament afectat per les onades de calor marines. La Reserva Marina de les Illes Medes (NO del Mediterrani) es considerava un refugi climàtic per aquesta espècie, degut a que les seves poblacions mostraven certa resiliència a les condicions canviants. En aquest estudi hem avaluat els impactes de les onades de calor marines succeïdes entre els anys 2016 i 2022 a set poblacions someres de l'octocorall P. clavata, en una Àrea Marina Protegida del Mediterrani. Els anys en els quals les taxes de mortalitat van incrementar significativament s'associen amb els anys amb fortes onades de calor marines, sent el 2022 l'any amb la mortalitat més elevada. Al 2022, amb 50 dies d'onada de calor, la proporció total de colònies afectades va ser prop del 70%, amb un percentatge de superfície afectada de gairebé el 40%, arribant a valors mai observats en el lloc d'estudi des de que es va iniciar el seguiment d'aquestes poblacions. També hem observat variabilitat espacial entre les poblacions mostrejades. Mentre que algunes d'elles han mostrat poca mortalitat, altres han perdut al voltant del 75% de la seva biomassa. Els impactes documentats en aquest estudi mostren un futur preocupant de les poblacions someres de P. clavata arreu del Mediterrani, i això suggereix que la resiliència d'aquesta espècie podria no ser suficient per mantenir les seves poblacions en l'escenari d'escalfament que es preveu.

2.
Glob Chang Biol ; 28(19): 5708-5725, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35848527

RESUMO

Climate change is causing an increase in the frequency and intensity of marine heatwaves (MHWs) and mass mortality events (MMEs) of marine organisms are one of their main ecological impacts. Here, we show that during the 2015-2019 period, the Mediterranean Sea has experienced exceptional thermal conditions resulting in the onset of five consecutive years of widespread MMEs across the basin. These MMEs affected thousands of kilometers of coastline from the surface to 45 m, across a range of marine habitats and taxa (50 taxa across 8 phyla). Significant relationships were found between the incidence of MMEs and the heat exposure associated with MHWs observed both at the surface and across depths. Our findings reveal that the Mediterranean Sea is experiencing an acceleration of the ecological impacts of MHWs which poses an unprecedented threat to its ecosystems' health and functioning. Overall, we show that increasing the resolution of empirical observation is critical to enhancing our ability to more effectively understand and manage the consequences of climate change.


Assuntos
Organismos Aquáticos , Ecossistema , Mudança Climática , Mar Mediterrâneo
3.
Sci Rep ; 10(1): 19219, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154466

RESUMO

The widespread decline of canopy-forming macroalgal assemblages has been documented in many regions during the last decades. This pattern is often followed by the replacement of structurally complex algal canopies by more simplified habitats (e.g., turfs or sea urchin barren grounds). Against all odds, the fucoid Treptacantha elegans, a large Mediterranean brown macroalga, broadened its depth range to deeper and exposed environments and displayed an unexpected range expansion along the northern coast of Catalonia over the last two decades. Here, we reconstruct the spread of T. elegans in time and space and unravel ecological and demographic traits such as population dynamics and genetic patterns to provide a comprehensive and integrated view of the current status and geographical expansion for this species. Fast-growing dynamics, early fertile maturity, and high turnover rate are the main competitive advantages that allow the exposed populations of T. elegans to colonize available substrata and maintain dense and patchy populations. We also provided evidence that the deeper and exposed populations of T. elegans constitute a single group across the Catalan coast, with little genetic differentiation among populations. This seems to support the hypothesis of a unique source of spread in the last decades from the Medes Islands No-Take Zone towards both southern and northern waters.


Assuntos
Ecossistema , Variação Genética , Alga Marinha/genética , Mar Mediterrâneo , Dinâmica Populacional
4.
Mar Environ Res ; 153: 104826, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31703945

RESUMO

Macroalgal communities have an essential role in the shallow benthic habitats of temperate seas, where changes in their composition can resonate through entire coastal ecosystems. As all major ecosystems on Earth, algal beds have already been affected by multiple disturbances. Passive conservation tools, such as marine protected areas or No-take zones, have the potential to reduce some of the anthropogenic impacts by limiting human activity. However, without a good knowledge of the natural community dynamics, it is not easy to discern between changes fruit of the intrinsic variability of biological communities and the ones caused by human-related stressors. In this study, we evaluated the natural variability of macroalgal communities' composition inside and outside a Mediterranean No-Take marine reserve during 15 years. We described their temporal dynamics considering their main drivers and we tested the effect of protection in seaweed beds. We did not find differences either in the composition of the macroalgal assemblages or the total algal cover between protected and non-protected locations over the fifteen years of study. Nevertheless, we observed a positive effect of the protection increasing the cover of some specific species, such as the canopy-forming Treptacantha elegans. Our results highlight the importance of obtaining long-term data in ecological studies to better understand the natural variability of marine communities. Accordingly, a robust understanding of the community dynamics would help us to avoid misinterpretations between 'impacted' or 'in-recovery' communities when recovery times are longer than the study periods.

5.
Mar Environ Res ; 145: 147-154, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30862382

RESUMO

Understanding how no-take zones (NTZs) shape the population dynamics of key herbivores is crucial for the conservation and management of temperate benthic communities. Here, we examine the recovery patterns of sea urchin populations following a high-intensity storm under contrasting protection regimes in the NW Mediterranean Sea. We found significant differences in the recovery trends of Paracentrotus lividus abundance and biomass in the five years following the storm. The P. lividus populations outside the NTZ recovered faster than the populations inside the NTZ, revealing that predation was the main factor controlling the sea urchin populations inside the NTZ during the study period. Arbacia lixula reached the highest abundance and biomass values ever observed outside the NTZ in 2016. Our findings reveal that predation can control the establishment of new sea urchin populations and emphasize top-down control in NTZs, confirming the important role of fully protected areas in the structure of benthic communities.


Assuntos
Arbacia , Paracentrotus , Animais , Mar Mediterrâneo , Dinâmica Populacional , Comportamento Predatório , Ouriços-do-Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...