Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 15(704): eabq6225, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37437019

RESUMO

Hepatic inflammation is a common trigger of chronic liver disease. Macrophage activation is a predictive parameter for survival in patients with cirrhosis. Ring finger protein 41 (RNF41) negatively regulates proinflammatory cytokines and receptors; however, the precise involvement of macrophage RNF41 in liver cirrhosis remains unknown. Here, we sought to understand how RNF41 dictates macrophage fate in hepatic fibrosis and repair within the inflammatory milieu. We found that RNF41 expression is down-regulated in CD11b+ macrophages recruited to mouse fibrotic liver and to patient cirrhotic liver regardless of cirrhosis etiology. Prolonged inflammation with TNF-α progressively reduced macrophage RNF41 expression. We designed a macrophage-selective gene therapy with dendrimer-graphite nanoparticles (DGNPs) to explore the influence of macrophage RNF41 restoration and depletion in liver fibrosis and regeneration. RNF41 expression induced in CD11b+ macrophages by DGNP-conjugated plasmids ameliorated liver fibrosis, reduced liver injury, and stimulated hepatic regeneration in fibrotic mice with or without hepatectomy. This therapeutic effect was mainly mediated by the induction of insulin-like growth factor 1. Conversely, depletion of macrophage RNF41 worsened inflammation, fibrosis, hepatic damage, and survival. Our data reveal implications of macrophage RNF41 in the control of hepatic inflammation, fibrosis, and regeneration and provide a rationale for therapeutic strategies in chronic liver disease and potentially other diseases characterized by inflammation and fibrosis.


Assuntos
Inflamação , Cirrose Hepática , Animais , Camundongos , Citocinas , Macrófagos
2.
Front Immunol ; 14: 1196033, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37483594

RESUMO

Monocytes are circulating leukocytes of innate immunity derived from the bone marrow that interact with endothelial cells under physiological or pathophysiological conditions to orchestrate inflammation, angiogenesis, or tissue remodeling. Monocytes are attracted by chemokines and specific receptors to precise areas in vessels or tissues and transdifferentiate into macrophages with tissue damage or infection. Adherent monocytes and infiltrated monocyte-derived macrophages locally release a myriad of cytokines, vasoactive agents, matrix metalloproteinases, and growth factors to induce vascular and tissue remodeling or for propagation of inflammatory responses. Infiltrated macrophages cooperate with tissue-resident macrophages during all the phases of tissue injury, repair, and regeneration. Substances released by infiltrated and resident macrophages serve not only to coordinate vessel and tissue growth but cellular interactions as well by attracting more circulating monocytes (e.g. MCP-1) and stimulating nearby endothelial cells (e.g. TNF-α) to expose monocyte adhesion molecules. Prolonged tissue accumulation and activation of infiltrated monocytes may result in alterations in extracellular matrix turnover, tissue functions, and vascular leakage. In this review, we highlight the link between interactions of infiltrating monocytes and endothelial cells to regulate vascular and tissue remodeling with a special focus on how these interactions contribute to pathophysiological conditions such as cardiovascular and chronic liver diseases.


Assuntos
Células Endoteliais , Monócitos , Macrófagos/metabolismo , Comunicação Celular , Citocinas/metabolismo
3.
Pharmaceutics ; 15(5)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37242695

RESUMO

Macrophages play essential roles during the progression of chronic liver disease. They actively participate in the response to liver damage and in the balance between fibrogenesis and regression. The activation of the PPARγ nuclear receptor in macrophages has traditionally been associated with an anti-inflammatory phenotype. However, there are no PPARγ agonists with high selectivity for macrophages, and the use of full agonists is generally discouraged due to severe side effects. We designed dendrimer-graphene nanostars linked to a low dose of the GW1929 PPARγ agonist (DGNS-GW) for the selective activation of PPARγ in macrophages in fibrotic livers. DGNS-GW preferentially accumulated in inflammatory macrophages in vitro and attenuated macrophage pro-inflammatory phenotype. The treatment with DGNS-GW in fibrotic mice efficiently activated liver PPARγ signaling and promoted a macrophage switch from pro-inflammatory M1 to anti-inflammatory M2 phenotype. The reduction of hepatic inflammation was associated with a significant reduction in hepatic fibrosis but did not alter liver function or hepatic stellate cell activation. The therapeutic antifibrotic utility of DGNS-GW was attributed to an increased expression of hepatic metalloproteinases that allowed extracellular matrix remodeling. In conclusion, the selective activation of PPARγ in hepatic macrophages with DGNS-GW significantly reduced hepatic inflammation and stimulated extracellular matrix remodeling in experimental liver fibrosis.

4.
Pharmaceutics ; 13(9)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34575416

RESUMO

Nanoparticles are nanomaterials with three external nanoscale dimensions and an average size ranging from 1 to 1000 nm. Nanoparticles have gained notoriety in technological advances due to their tunable physical, chemical, and biological characteristics. However, the administration of functionalized nanoparticles to living beings is still challenging due to the rapid detection and blood and tissue clearance by the mononuclear phagocytic system. The major exponent of this system is the macrophage. Regardless the nanomaterial composition, macrophages can detect and incorporate foreign bodies by phagocytosis. Therefore, the simplest explanation is that any injected nanoparticle will be probably taken up by macrophages. This explains, in part, the natural accumulation of most nanoparticles in the spleen, lymph nodes, and liver (the main organs of the mononuclear phagocytic system). For this reason, recent investigations are devoted to design nanoparticles for specific macrophage targeting in diseased tissues. The aim of this review is to describe current strategies for the design of nanoparticles to target macrophages and to modulate their immunological function involved in different diseases with special emphasis on chronic inflammation, tissue regeneration, and cancer.

5.
Pharmaceutics ; 12(9)2020 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906852

RESUMO

Cancer has become one of the most prevalent diseases worldwide, with increasing incidence in recent years. Current pharmacological strategies are not tissue-specific therapies, which hampers their efficacy and results in toxicity in healthy organs. Carbon-based nanomaterials have emerged as promising nanoplatforms for the development of targeted delivery systems to treat diseased cells. Single-walled carbon nanohorns (SWCNH) are graphene-based horn-shaped nanostructure aggregates with a multitude of versatile features to be considered as suitable nanosystems for targeted drug delivery. They can be easily synthetized and functionalized to acquire the desired physicochemical characteristics, and no toxicological effects have been reported in vivo followed by their administration. This review focuses on the use of SWCNH as drug delivery systems for cancer therapy. Their main applications include their capacity to act as anticancer agents, their use as drug delivery systems for chemotherapeutics, photothermal and photodynamic therapy, gene therapy, and immunosensing. The structure, synthesis, and covalent and non-covalent functionalization of these nanoparticles is also discussed. Although SWCNH are in early preclinical research yet, these nanotube-derived nanostructures demonstrate an interesting versatility pointing them out as promising forthcoming drug delivery systems to target and treat cancer cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA