Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 26(12): 108367, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38025776

RESUMO

Cellular crosstalk in the tumor microenvironment (TME) is still largely uncharacterized, while it plays an essential role in shaping immunosuppression or anti-tumor response. Large-scale analyses are needed to better decipher cell-cell communication in cancer. In this work, we used original and publicly available single-cell RNA sequencing (scRNAseq) data to characterize in-depth the communication networks in human clear cell renal cell carcinoma (ccRCC). We identified 50 putative communication channels specifically used by cancer cells to interact with other cells, including two novel angiogenin-mediated interactions. Expression of angiogenin and its receptors was validated at the protein level in primary ccRCC. Mechanistically, angiogenin enhanced ccRCC cell line proliferation and down-regulated secretion of IL-6, IL-8, and MCP-1 proinflammatory molecules. This study provides novel biological insights into molecular mechanisms of ccRCC, and suggests angiogenin and its receptors as potential therapeutic targets in clear cell renal cancer.

2.
Cancer Res ; 83(3): 363-373, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36459564

RESUMO

The development of single-cell RNA sequencing (scRNA-seq) technologies has greatly contributed to deciphering the tumor microenvironment (TME). An enormous amount of independent scRNA-seq studies have been published representing a valuable resource that provides opportunities for meta-analysis studies. However, the massive amount of biological information, the marked heterogeneity and variability between studies, and the technical challenges in processing heterogeneous datasets create major bottlenecks for the full exploitation of scRNA-seq data. We have developed IMMUcan scDB (https://immucanscdb.vital-it.ch), a fully integrated scRNA-seq database exclusively dedicated to human cancer and accessible to nonspecialists. IMMUcan scDB encompasses 144 datasets on 56 different cancer types, annotated in 50 fields containing precise clinical, technological, and biological information. A data processing pipeline was developed and organized in four steps: (i) data collection; (ii) data processing (quality control and sample integration); (iii) supervised cell annotation with a cell ontology classifier of the TME; and (iv) interface to analyze TME in a cancer type-specific or global manner. This framework was used to explore datasets across tumor locations in a gene-centric (CXCL13) and cell-centric (B cells) manner as well as to conduct meta-analysis studies such as ranking immune cell types and genes correlated to malignant transformation. This integrated, freely accessible, and user-friendly resource represents an unprecedented level of detailed annotation, offering vast possibilities for downstream exploitation of human cancer scRNA-seq data for discovery and validation studies. SIGNIFICANCE: The IMMUcan scDB database is an accessible supportive tool to analyze and decipher tumor-associated single-cell RNA sequencing data, allowing researchers to maximally use this data to provide new insights into cancer biology.


Assuntos
Neoplasias , Software , Humanos , Perfilação da Expressão Gênica , Análise de Sequência de RNA , Análise da Expressão Gênica de Célula Única , Neoplasias/genética , Análise de Célula Única , Microambiente Tumoral/genética
3.
Eur J Immunol ; 51(12): 3146-3160, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34606627

RESUMO

Distributed throughout the body, lymph nodes (LNs) constitute an important crossroad where resident and migratory immune cells interact to initiate antigen-specific immune responses supported by a dynamic 3-dimensional network of stromal cells, that is, endothelial cells and fibroblastic reticular cells (FRCs). LNs are organized into four major subanatomically separated compartments: the subcapsular sinus (SSC), the paracortex, the cortex, and the medulla. Each compartment is underpinned by particular FRC subsets that physically support LN architecture and delineate functional immune niches by appropriately providing environmental cues, nutrients, and survival factors to the immune cell subsets they interact with. In this review, we discuss how FRCs drive the structural and functional organization of each compartment to give rise to prosperous interactions and coordinate immune cell activities. We also discuss how reciprocal communication makes FRCs and immune cells perfect compatible partners for the generation of potent cellular and humoral immune responses.


Assuntos
Comunicação Celular/imunologia , Imunidade Celular , Imunidade Humoral , Linfonodos/imunologia , Animais , Humanos
4.
Nat Cell Biol ; 23(5): 538-551, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33972731

RESUMO

COVID-19 can lead to life-threatening respiratory failure, with increased inflammatory mediators and viral load. Here, we perform single-cell RNA-sequencing to establish a high-resolution map of blood antigen-presenting cells (APCs) in 15 patients with moderate or severe COVID-19 pneumonia, at day 1 and day 4 post admission to intensive care unit or pulmonology department, as well as in 4 healthy donors. We generated a unique dataset of 81,643 APCs, including monocytes and rare dendritic cell (DC) subsets. We uncovered multi-process defects in antiviral immune defence in specific APCs from patients with severe disease: (1) increased pro-apoptotic pathways in plasmacytoid DCs (pDCs, key effectors of antiviral immunity), (2) a decrease of the innate sensors TLR9 and DHX36 in pDCs and CLEC9a+ DCs, respectively, (3) downregulation of antiviral interferon-stimulated genes in monocyte subsets and (4) a decrease of major histocompatibility complex (MHC) class II-related genes and MHC class II transactivator activity in cDC1c+ DCs, suggesting viral inhibition of antigen presentation. These novel mechanisms may explain patient aggravation and suggest strategies to restore the defective immune defence.


Assuntos
Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia , Antígenos Virais/imunologia , Antivirais/imunologia , COVID-19/sangue , COVID-19/imunologia , Células Dendríticas/imunologia , Humanos , Monócitos/imunologia , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
6.
Eur J Immunol ; 48(8): 1271-1280, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29974461

RESUMO

Natural killer (NK) cells and lymphoid tissue inducer (LTi) cells were discovered more than 40 and 20 years ago, respectively. These two cell types were initially studied for their unique functions in the elimination of infected or transformed cells, and in the development of lymphoid tissues. It took an additional 10 years to realize that NK cells and LTi cells were members of a larger family of innate lymphoid cells (ILCs), whose phenotypes and functions mirror those of T cells. Many mouse models have since been developed to identify and isolate ILCs, map their developmental pathways and characterize their functions. Because of the similarity between ILCs and T cells, this exploration remains a challenge. In spite of this, a broad range of mouse models available to researchers has lead to significant progress in untangling the unique roles of ILCs early in defense, regulation of adaptive immunity and homeostasis. Here, we review these mouse models, and discuss their strengths and limitations.


Assuntos
Células Matadoras Naturais/imunologia , Linfócitos/imunologia , Modelos Animais , Linfócitos T Auxiliares-Indutores/imunologia , Animais , Linhagem da Célula , Imunidade Inata/imunologia , Tecido Linfoide/citologia , Tecido Linfoide/imunologia , Camundongos , Camundongos Knockout
7.
Microbes Infect ; 20(6): 317-322, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29852240

RESUMO

Innate lymphoid cells (ILCs) are the innate counterpart of T cells. Upon infection or injury, ILCs react promptly to direct the developing immune response to the one most adapted to the threat facing the organism. Therefore, ILCs play an important role early in resistance to infection, but also to maintain homeostasis with the symbiotic microbiota following perturbations induced by diet and pathogens. Such roles of ILCs have been best characterized in the intestine and lung, mucosal sites that are exposed to the environment and are therefore colonized with diverse but specific types of microbes. Understanding the dialogue between pathogens, microbiota and ILCs may lead to new strategies to re-inforce immunity for prevention, vaccination and therapy.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Linfócitos/imunologia , Microbiota/imunologia , Animais , Citocinas/imunologia , Homeostase/imunologia , Humanos , Mucosa Intestinal/imunologia , Linfócitos/citologia , Mucosa Respiratória/imunologia , Simbiose/imunologia
9.
FEBS Lett ; 588(22): 4176-81, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-24681095

RESUMO

RORγt(+) innate lymphoid cells (ILCs), or ILC3, play a fundamental role in the development of lymphoid tissues, as well as in homeostasis and defence of mucosal tissues. These cells produce IL-22, IL-17A and LTα1ß2, key cytokines for the activation of epithelial defences and the recruitment of polymorphonuclear phagocytes. In the absence of ILC3, the early defence to infection and resistance to injury are compromised. Given the importance of ILC3 in mucosal immunity, significant efforts are made to discover their multiple functions and decipher their mode of action and regulation.


Assuntos
Imunidade Inata , Linfócitos/imunologia , Linfócitos/metabolismo , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Animais , Humanos , Linfócitos/citologia
10.
Immunity ; 39(2): 229-44, 2013 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-23973221

RESUMO

The immunoglobulin heavy-chain (Igh) locus undergoes large-scale contraction in pro-B cells, which facilitates VH-DJH recombination by juxtaposing distal VH genes next to the DJH-rearranged gene segment in the 3' proximal Igh domain. By using high-resolution mapping of long-range interactions, we demonstrate that local interaction domains established the three-dimensional structure of the extended Igh locus in lymphoid progenitors. In pro-B cells, these local domains engaged in long-range interactions across the Igh locus, which depend on the regulators Pax5, YY1, and CTCF. The large VH gene cluster underwent flexible long-range interactions with the more rigidly structured proximal domain, which probably ensures similar participation of all VH genes in VH-DJH recombination to generate a diverse antibody repertoire. These long-range interactions appear to be an intrinsic feature of the VH gene cluster, because they are still generated upon mutation of the Eµ enhancer, IGCR1 insulator, or 3' regulatory region in the proximal Igh domain.


Assuntos
Diversidade de Anticorpos/genética , Rearranjo Gênico de Cadeia Pesada de Linfócito B/genética , Genes de Cadeia Pesada de Imunoglobulina , Região Variável de Imunoglobulina/genética , Células Precursoras de Linfócitos B/imunologia , Animais , Sequência de Bases , Sítios de Ligação , Fator de Ligação a CCCTC , Mapeamento Cromossômico , Rearranjo Gênico , Camundongos , Camundongos Endogâmicos C57BL , Fator de Transcrição PAX5/metabolismo , Ligação Proteica , Proteínas Repressoras/metabolismo , Análise de Sequência de DNA , Fator de Transcrição YY1/metabolismo
11.
Artigo em Inglês | MEDLINE | ID: mdl-24584058

RESUMO

Lymphocytes recognize a vast variety of pathogens by expressing a diverse repertoire of antigen receptor genes that are assembled by V(D)J recombination in immature B cells (Igh, Igk) and T cells (Tcrb, Tcra/d). V(D)J recombination takes place in the 3' proximal domain containing the D, J, and C gene segments, whereas 31 (Tcrb) to 200 (Igh) V genes are spread over a large region of 0.67 (Tcrb) to 3 (Igk) Mb pairs. All antigen receptor loci undergo reversible contraction at the developmental stage, where they engage in V-(D)J recombination. This long-range looping promotes the participation of all V genes in V-(D)J recombination by juxtaposing distant V genes next to (D)J segments in the proximal recombination center. The B-cell-specific Pax5, ubiquitous YY1, and architectural CTCF/cohesin proteins promote Igh locus contraction in pro-B cells by binding to multiple sites in the VH gene cluster. These regulators also control the pro-B-cell-specific activity of the distally located PAIR elements, which are likely involved in the regulation of VH-DJH recombination by mediating locus contraction. Notably, the large VH gene cluster of the Igh locus undergoes flexible long-range looping that ensures similar participation of all VH genes in VH-DJH recombination to generate a diverse antibody repertoire.


Assuntos
Receptores de Antígenos/genética , Recombinação V(D)J , VDJ Recombinases/metabolismo , Alelos , Animais , Anticorpos/imunologia , Linfócitos B/imunologia , Cromatina/metabolismo , Elementos Facilitadores Genéticos , Humanos , Linfócitos/imunologia , Camundongos , Modelos Genéticos , Família Multigênica , Mutagênese , Ligação Proteica , Receptores de Antígenos/imunologia , Fatores de Transcrição/metabolismo
12.
J Exp Med ; 209(4): 775-92, 2012 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-22473956

RESUMO

The transcription factor EBF1 is essential for lineage specification in early B cell development. In this study, we demonstrate by conditional mutagenesis that EBF1 is required for B cell commitment, pro-B cell development, and subsequent transition to the pre-B cell stage. Later in B cell development, EBF1 was essential for the generation and maintenance of several mature B cell types. Marginal zone and B-1 B cells were lost, whereas follicular (FO) and germinal center (GC) B cells were reduced in the absence of EBF1. Activation of the B cell receptor resulted in impaired intracellular signaling, proliferation and survival of EBF1-deficient FO B cells. Immune responses were severely reduced upon Ebf1 inactivation, as GCs were formed but not maintained. ChIP- and RNA-sequencing of FO B cells identified EBF1-activated genes that encode receptors, signal transducers, and transcriptional regulators implicated in B cell signaling. Notably, ectopic expression of EBF1 efficiently induced the development of B-1 cells at the expense of conventional B cells. These gain- and loss-of-function analyses uncovered novel important functions of EBF1 in controlling B cell immunity.


Assuntos
Linfócitos B/imunologia , Transativadores/fisiologia , Animais , Linfócitos B/citologia , Diferenciação Celular , Cadeias Pesadas de Imunoglobulinas/genética , Região Variável de Imunoglobulina/genética , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Fator de Transcrição PAX5/fisiologia , Receptores de Antígenos de Linfócitos B/fisiologia , Receptores de IgE/análise , Transdução de Sinais
13.
Adv Immunol ; 111: 179-206, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21970955

RESUMO

The B cell lineage of the hematopoietic system is responsible for the generation of high-affinity antibodies, which provide humoral immunity for protection against foreign pathogens. B cell commitment and development depend on many transcription factors including Pax5. Here, we review the different functions of Pax5 in regulating various aspects of B lymphopoiesis. At B cell commitment, Pax5 restricts the developmental potential of lymphoid progenitors to the B cell pathway by repressing B-lineage-inappropriate genes, while it simultaneously promotes B cell development by activating B-lymphoid-specific genes. Pax5 thereby controls gene transcription by recruiting chromatin-remodeling, histone-modifying, and basal transcription factor complexes to its target genes. Moreover, Pax5 contributes to the diversity of the antibody repertoire by controlling V(H)-DJ(H) recombination by inducing contraction of the immunoglobulin heavy-chain locus in pro-B cells, which is likely mediated by PAIR elements in the 5' region of the V(H) gene cluster. Importantly, all mature B cell types depend on Pax5 for their differentiation and function. Pax5 thus controls the identity of B lymphocytes throughout B cell development. Consequently, conditional loss of Pax5 allows mature B cells from peripheral lymphoid organs to develop into functional T cells in the thymus via dedifferentiation to uncommitted progenitors in the bone marrow. Pax5 has also been implicated in human B cell malignancies because it can function as a haploinsufficient tumor suppressor or oncogenic translocation fusion protein in B cell precursor acute lymphoblastic leukemia.


Assuntos
Leucemia/patologia , Fator de Transcrição PAX5/metabolismo , Animais , Diversidade de Anticorpos , Formação de Anticorpos , Linfócitos B/imunologia , Linfócitos B/fisiologia , Regulação da Expressão Gênica , Rearranjo Gênico do Linfócito B , Humanos , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/imunologia , Região Variável de Imunoglobulina/genética , Região Variável de Imunoglobulina/imunologia , Leucemia/imunologia , Linfopoese , Fator de Transcrição PAX5/genética
14.
EMBO J ; 30(12): 2388-404, 2011 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-21552207

RESUMO

Pax5 is a critical regulator of B-cell commitment. Here, we identified direct Pax5 target genes by streptavidin-mediated ChIP-chip analysis of pro-B cells expressing in vivo biotinylated Pax5. By binding to promoters and enhancers, Pax5 directly regulates the expression of multiple transcription factor, cell surface receptor and signal transducer genes. One of the newly identified enhancers was shown by transgenic analysis to confer Pax5-dependent B-cell-specific activity to the Nedd9 gene controlling B-cell trafficking. Profiling of histone modifications in Pax5-deficient and wild-type pro-B cells demonstrated that Pax5 induces active chromatin at activated target genes, while eliminating active chromatin at repressed genes in committed pro-B cells. Pax5 rapidly induces these chromatin and transcription changes by recruiting chromatin-remodelling, histone-modifying and basal transcription factor complexes to its target genes. These data provide novel insight into the regulatory network and epigenetic regulation, by which Pax5 controls B-cell commitment.


Assuntos
Subpopulações de Linfócitos B/citologia , Subpopulações de Linfócitos B/metabolismo , Diferenciação Celular , Cromatina/metabolismo , Marcação de Genes , Fator de Transcrição PAX5/fisiologia , Animais , Diferenciação Celular/genética , Linhagem Celular , Técnicas de Introdução de Genes , Marcação de Genes/métodos , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Fator de Transcrição PAX5/genética , Ligação Proteica/genética , Transporte Proteico/genética , Transdução de Sinais/genética , Células-Tronco/citologia , Células-Tronco/metabolismo
15.
Immunity ; 34(2): 175-87, 2011 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-21349430

RESUMO

V(H)-DJ(H) recombination of the immunoglobulin heavy chain (Igh) locus is temporally and spatially controlled during early B cell development, and yet no regulatory elements other than the V(H) gene promoters have been identified throughout the entire V(H) gene cluster. Here, we discovered regulatory sequences that are interspersed in the distal V(H) gene region. These conserved repeat elements were characterized by the presence of Pax5 transcription factor-dependent active chromatin by binding of the regulators Pax5, E2A, CTCF, and Rad21, as well as by Pax5-dependent antisense transcription in pro-B cells. The Pax5-activated intergenic repeat (PAIR) elements were no longer bound by Pax5 in pre-B and B cells consistent with the loss of antisense transcription, whereas E2A and CTCF interacted with PAIR elements throughout early B cell development. The pro-B cell-specific and Pax5-dependent activity of the PAIR elements suggests that they are involved in the regulation of distal V(H)-DJ(H) recombination at the Igh locus.


Assuntos
Cromatina/genética , DNA Intergênico/genética , Rearranjo Gênico de Cadeia Pesada de Linfócito B , Genes de Imunoglobulinas/genética , Cadeias Pesadas de Imunoglobulinas/genética , Fator de Transcrição PAX5/fisiologia , Sequências Reguladoras de Ácido Nucleico/genética , Animais , Linfócitos B/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/fisiologia , Sítios de Ligação , Fator de Ligação a CCCTC , Imunoprecipitação da Cromatina , Sequência Conservada , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Genéticos , Análise de Sequência com Séries de Oligonucleotídeos , Fator de Transcrição PAX5/deficiência , Fator de Transcrição PAX5/genética , Células Precursoras de Linfócitos B/metabolismo , RNA Antissenso/biossíntese , RNA Antissenso/genética , Proteínas Repressoras/fisiologia , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...