Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 24(5): 1471-1476, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38216142

RESUMO

We study current-induced switching of the Néel vector in CoO/Pt bilayers to understand the underlying antiferromagnetic switching mechanism. Surprisingly, we find that for ultrathin CoO/Pt bilayers electrical pulses along the same path can lead to an increase or decrease of the spin Hall magnetoresistance signal, depending on the current density of the pulse. By comparing these results to XMLD-PEEM imaging of the antiferromagnetic domain structure before and after the application of current pulses, we reveal the details of the reorientation of the Néel vector in ultrathin CoO(4 nm). This allows us to understand how opposite resistance changes can result from a thermomagnetoelastic switching mechanism. Importantly, our spatially resolved imaging shows that regions where the current pulses are applied and regions further away exhibit different switched spin structures, which can be explained by a spin-orbit torque-based switching mechanism that can dominate in very thin films.

2.
Nano Lett ; 21(1): 114-119, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33306407

RESUMO

We unravel the origin of current-induced magnetic switching of insulating antiferromagnet/heavy metal systems. We utilize concurrent transport and magneto-optical measurements to image the switching of antiferromagnetic domains in specially engineered devices of NiO/Pt bilayers. Different electrical pulsing and device geometries reveal different final states of the switching with respect to the current direction. We can explain these through simulations of the temperature-induced strain, and we identify the thermomagnetoelastic switching mechanism combined with thermal excitations as the origin, in which the final state is defined by the strain distributions and heat is required to switch the antiferromagnetic domains. We show that such a potentially very versatile noncontact mechanism can explain the previously reported contradicting observations of the switching final state, which were attributed to spin-orbit torque mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...