Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Psychol ; 9: 2354, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30555380

RESUMO

Collision avoidance between multiple walkers, such as pedestrians in a crowd, is based on a reciprocal coupling between the walkers with a continuous loop between perception and action. Such interpersonal coordination has previously been studied in the case of dyadic locomotor interactions. However, when walking through a crowd of people, collision avoidance is not restricted to dyadic interactions. We examined how dyadic avoidance (1 vs. 1) compared to triadic avoidance (1 vs. 2). Additionally, we examined how the dynamics of a passable gap between two walkers affected locomotor interactions. To this end, we manipulated the starting formation of two walkers that formed a potentially pass-able gap for the other walker. We analyzed the interactions in terms of the evolution over time of the Minimal Predicted Distance and the Dynamics of the Gap, which both provide information about what action is afforded (i.e., passing in front/behind and the pass-ability of the gap). Results showed that some triadic interactions invited for sequential interactions, resulting in avoidance strategies comparable with dyadic interactions. However, some formations resulted in simultaneous interactions where the dynamics of the pass-ability of the gap revealed that the coordination strategy emerged over time through the bi-directional interactions between all walkers. Future work should address which circumstances invite for simultaneous and which for sequential interactions between multiple walkers. This study contributed toward understanding how collision is avoided between multiple walkers at the level of the local interactions.

2.
IEEE Trans Vis Comput Graph ; 24(7): 2078-2088, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-28650816

RESUMO

Daily activities require agents to interact with each other, such as during collision avoidance. The nature of visual information that is used for a collision free interaction requires further understanding. We aim to manipulate the nature of visual information in two forms, global and local information appearances. Sixteen healthy participants navigated towards a target in an immersive computer-assisted virtual environment (CAVE) using a joystick. A moving passive obstacle crossed the participant's trajectory perpendicularly at various pre-defined risks of collision distances. The obstacle was presented with one of five virtual appearances, associated to global motion cues (i.e., a cylinder or a sphere), or local motion cues (i.e., only the legs or the trunk). A full body virtual walker, showing both local and global motion cues, used as a reference condition. The final crossing distance was affected by the global motion appearances, however, appearance had no qualitative effect on motion adaptations. These findings contribute towards further understanding what information people use when interacting with others.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...