Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38679918

RESUMO

Bone fracture healing is a complex process in which specific molecular knowledge is still lacking. The citrulline-arginine-nitric oxide metabolism is one of the involved pathways, and its enrichment via citrulline supplementation can enhance fracture healing. This study investigated the molecular effects of citrulline supplementation during the different fracture healing phases in a rat model. Microcomputed tomography (µCT) was applied for the analysis of the fracture callus formation. Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and liquid-chromatography tandem mass spectrometry (LC-MS/MS) were used for lipid and protein analyses, respectively. µCT analysis showed no significant differences in the fracture callus volume and volume fraction between the citrulline supplementation and control group. The observed lipid profiles for the citrulline supplementation and control group were distinct for the different fracture healing stages. The main contributing lipid classes were phosphatidylcholines (PCs) and lysophosphatidylcholines (LPCs). The changing effect of citrulline supplementation throughout fracture healing was indicated by changes in the differentially expressed proteins between the groups. Pathway analysis showed an enhancement of fracture healing in the citrulline supplementation group in comparison to the control group via improved angiogenesis and earlier formation of the soft and hard callus. This study showed the molecular effects on lipids, proteins, and pathways associated with citrulline supplementation during bone fracture healing, even though no effect was visible with µCT.

2.
Biomedicines ; 10(10)2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36289736

RESUMO

Fracture healing and nonunion development are influenced by a range of biological factors. Adequate amino acid concentrations, especially arginine, are known to be important during normal bone healing. We hypothesize that bone arginine availability in autologous bone marrow grafting, when using the reamer-irrigator-aspirator (RIA) procedure, is a marker of bone healing capacity in patients treated for nonunion. Seventeen patients treated for atrophic long bone nonunion by autologous bone grafting by the RIA procedure were included and divided into two groups, successful treatment of nonunion and unsuccessful, and were compared with control patients after normal fracture healing. Reamed bone marrow aspirate from a site distant to the nonunion was obtained and the amino acids and enzymes relevant to arginine metabolism were measured. Arginine and ornithine concentrations were higher in patients with successful bone healing after RIA in comparison with unsuccessful healing. Ornithine concentrations and arginase-1 expression were lower in all nonunion patients compared to control patients, while citrulline concentrations were increased. Nitric oxide synthase 2 (Nos2) expression was significantly increased in all RIA-treated patients, and higher in patients with a successful outcome when compared with an unsuccessful outcome. The results indicate an influence of the arginine-nitric oxide metabolism in collected bone marrow, on the outcome of nonunion treatment, with indications for a prolonged inflammatory response in patients with unsuccessful bone grafting therapy. The determination of arginine concentrations and Nos2 expression could be used as a predictor for the successful treatment of autologous bone grafting in nonunion treatment.

3.
Int J Mol Sci ; 22(21)2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34769369

RESUMO

Competition for the amino acid arginine by endothelial nitric-oxide synthase (NOS3) and (pro-)inflammatory NO-synthase (NOS2) during endotoxemia appears essential in the derangement of the microcirculatory flow. This study investigated the role of NOS2 and NOS3 combined with/without citrulline supplementation on the NO-production and microcirculation during endotoxemia. Wildtype (C57BL6/N background; control; n = 36), Nos2-deficient, (n = 40), Nos3-deficient (n = 39) and Nos2/Nos3-deficient mice (n = 42) received a continuous intravenous LPS infusion alone (200 µg total, 18 h) or combined with L-citrulline (37.5 mg, last 6 h). The intestinal microcirculatory flow was measured by side-stream dark field (SDF)-imaging. The jejunal intracellular NO production was quantified by in vivo NO-spin trapping combined with electron spin-resonance (ESR) spectrometry. Amino-acid concentrations were measured by high-performance liquid chromatography (HPLC). LPS infusion decreased plasma arginine concentration in control and Nos3-/- compared to Nos2-/- mice. Jejunal NO production and the microcirculation were significantly decreased in control and Nos2-/- mice after LPS infusion. No beneficial effects of L-citrulline supplementation on microcirculatory flow were found in Nos3-/- or Nos2-/-/Nos3-/- mice. This study confirms that L-citrulline supplementation enhances de novo arginine synthesis and NO production in mice during endotoxemia with a functional NOS3-enzyme (control and Nos2-/- mice), as this beneficial effect was absent in Nos3-/- or Nos2-/-/Nos3-/- mice.


Assuntos
Arginina/metabolismo , Citrulina/administração & dosagem , Endotoxemia/patologia , Microcirculação , NADPH Oxidase 2/fisiologia , NADPH Oxidases/fisiologia , Óxido Nítrico/metabolismo , Animais , Endotoxemia/tratamento farmacológico , Endotoxemia/etiologia , Intestinos/efeitos dos fármacos , Intestinos/metabolismo , Intestinos/patologia , Jejuno/efeitos dos fármacos , Jejuno/metabolismo , Jejuno/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
Clin Nutr ; 40(8): 4932-4940, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34358839

RESUMO

BACKGROUND & AIMS: To develop a five grade score (0-4 points) for the assessment of gastrointestinal (GI) dysfunction in adult critically ill patients. METHODS: This prospective multicenter observational study enrolled consecutive adult patients admitted to 11 intensive care units in nine countries. At all sites, daily clinical data with emphasis on GI clinical symptoms were collected and intra-abdominal pressure measured. In five out of 11 sites, the biomarkers citrulline and intestinal fatty acid-binding protein (I-FABP) were measured additionally. Cox models with time-dependent scores were used to analyze associations with 28- and 90-day mortality. The models were estimated with stratification for study center. RESULTS: We included 540 patients (224 with biomarker measurements) with median age of 65 years (range 18-94), the Simplified Acute Physiology Score II score of 38 (interquartile range 26-53) points, and Sequential Organ Failure Assessment (SOFA) score of 6 (interquartile range 3-9) points at admission. Median ICU length of stay was 3 (interquartile range 1-6) days and 90-day mortality 18.9%. A new five grade Gastrointestinal Dysfunction Score (GIDS) was developed based on the rationale of the previously developed Acute GI Injury (AGI) grading. Citrulline and I-FABP did not prove their potential for scoring of GI dysfunction in critically ill. GIDS was independently associated with 28- and 90-day mortality when added to SOFA total score (HR 1.40; 95%CI 1.07-1.84 and HR 1.40; 95%CI 1.02-1.79, respectively) or to a model containing all SOFA subscores (HR 1.48; 95%CI 1.13-1.92 and HR 1.47; 95%CI 1.15-1.87, respectively), improving predictive power of SOFA score in all analyses. CONCLUSIONS: The newly developed GIDS is additive to SOFA score in prediction of 28- and 90-day mortality. The clinical usefulness of this score should be validated prospectively. TRIAL REGISTRATION: NCT02613000, retrospectively registered 24 November 2015.


Assuntos
Citrulina/sangue , Estado Terminal/mortalidade , Proteínas de Ligação a Ácido Graxo/sangue , Gastroenteropatias/diagnóstico , Escores de Disfunção Orgânica , Abdome/fisiopatologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/análise , Feminino , Trato Gastrointestinal/fisiopatologia , Humanos , Unidades de Terapia Intensiva , Tempo de Internação , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Pressão , Modelos de Riscos Proporcionais , Estudos Prospectivos , Escore Fisiológico Agudo Simplificado , Fatores de Tempo , Adulto Jovem
5.
Antioxidants (Basel) ; 10(1)2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33477615

RESUMO

As a mediator between lipid metabolism dysfunction, oxidative stress and inflammation, oxidized low-density lipoprotein (oxLDL) is a promising therapeutical target in a wide range of metabolic diseases. In mice, pneumococcal immunization increases anti-phosphorylcholine and oxLDL antibody levels, and reduces atherosclerosis, non-alcoholic steatohepatitis and Niemann-Pick disease burden. These findings suggest that pneumococcal vaccination may be a useful preventive and therapeutical strategy in metabolic disease patients. In this pilot clinical trial, our aim was to determine whether the administration of a pneumococcal vaccine increases anti-phosphorylcholine and anti-oxLDL antibody levels in metabolic disease patients. The following patients were enrolled: four patients with familial partial lipodystrophy (all women, mean age 32 years old); three familial hypercholesterolemia patients (one girl, two boys; mean age 13 years); and two Niemann-Pick type B (NP-B) patients (two men, mean age 37.5 years old). Participants received one active dose of a 13-valent conjugated pneumococcal vaccine (Prevenar 13) and were followed-up for four weeks. Four weeks after Prevenar 13 vaccination, no differences were observed in patients' levels of anti-oxLDL IgM or IgG antibodies. In addition, we observed a reduction in anti-phosphorylcholine (anti-PC) IgM antibody levels, whereas no differences were observed in anti-PC IgG antibody titers. These findings indicate that Prevenar 13 vaccination does not induce an immune response against oxLDL in patients with metabolic diseases. Therefore, Prevenar 13 is not suited to target the metabolic disruptor and pro-inflammatory mediator oxLDL in patients.

6.
Arch Orthop Trauma Surg ; 139(12): 1743-1753, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31399754

RESUMO

INTRODUCTION: Delayed union and nonunion development remain a major clinical problematic complication during fracture healing, with partially unclear pathophysiology. Incidences range from 5 to 40% in high-risk patients, such as patients with periosteal damage. The periosteum is essential in adequate fracture healing, especially during soft callus formation. In this study, we hypothesize that inducing periosteal damage in a murine bone healing model will result in a novel delayed union model. MATERIALS AND METHODS: A mid-shaft femoral non-critically sized osteotomy was created in skeletally mature C57BL/6 mice and stabilized with a bridging plate. In half of the mice, a thin band of periosteum adjacent to the osteotomy was cauterized. Over 42 days of healing, radiographic, biomechanical, micro-computed tomography and histological analysis was performed to assess the degree of fracture healing. RESULTS: Analysis showed complete secondary fracture healing in the control group without periosteal injury. Whereas the periosteal injury group demonstrated less than half as much maximum callus volume (p < 0.05) and bridging, recovery of stiffness and temporal expression of callus growth and remodelling was delayed by 7-15 days. CONCLUSION: This paper introduces a novel mouse model of delayed union without a critically sized defect and with standardized biomechanical conditions, which enables further investigation into the molecular biological, biomechanical, and biochemical processes involved in (delayed) fracture healing and nonunion development. This model provides a continuum between normal fracture healing and the development of nonunions.


Assuntos
Fraturas do Fêmur/cirurgia , Consolidação da Fratura/fisiologia , Periósteo/lesões , Animais , Calo Ósseo/fisiopatologia , Cauterização , Modelos Animais de Doenças , Fraturas do Fêmur/patologia , Fraturas do Fêmur/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Microtomografia por Raio-X
7.
Biosci Rep ; 39(4)2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30898976

RESUMO

INTRODUCTION: The gastrointestinal tract is a potential source of inflammation in dialysis patients. In vitro studies suggest breakdown of the gut barrier in uraemia leading to increased intestinal permeability and it is hypothesised that haemodialysis exacerbates this problem due to mesenteric ischaemia induced by blood volume changes during treatment. METHOD: The effect of haemodialysis on intestinal permeability was studied in ten haemodialysis patients and compared with five controls. Intestinal permeability was assessed by measuring the differential absorption of four orally administered sugar probes which provides an index of small and whole bowel permeability. A multi-sugar solution (containing lactulose, rhamnose, sucralose and erythritol) was orally administered after an overnight fast. Plasma levels of all sugar probes were measured hourly for 10 h post-administration. In haemodialysis patients, the procedure was carried out twice - once on a non-dialysis day and once immediately after haemodialysis. RESULTS: Area under curve (AUC) for lactulose:rhamnose (L:R) ratio and sucralose:erythritol (S:E) ratio was similar post-dialysis and on non-dialysis days. AUC for L:R was higher in haemodialysis patients compared with controls (0.071 vs. 0.034, P=0.001), AUC for S:E ratio was not significantly different. Levels of lactulose, sucralose and erythritol were elevated and retained longer in haemodialysis patients compared with controls due to dependence of sugars on kidney function for clearance. CONCLUSION: We found no significant acute changes in intestinal permeability in relation to the haemodialysis procedure. Valid comparison of intestinal permeability between controls and haemodialysis patients was not possible due to the strong influence of kidney function on sugar levels.


Assuntos
Hemodinâmica , Absorção Intestinal , Diálise Renal , Adulto , Trato Gastrointestinal/metabolismo , Humanos , Pessoa de Meia-Idade , Permeabilidade , Diálise Renal/efeitos adversos , Diálise Renal/métodos
8.
Nutrients ; 10(11)2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30384490

RESUMO

With the increasing incidence of fractures now, and in the future, the absolute number of bone-healing complications such as nonunion development will also increase. Next to fracture-dependent factors such as large bone loss volumes and inadequate stabilization, the nutritional state of these patients is a major influential factor for the fracture repair process. In this review, we will focus on the influence of protein/amino acid malnutrition and its influence on fracture healing. Mainly, the arginine-citrulline-nitric oxide metabolism is of importance since it can affect fracture healing via several precursors of collagen formation, and through nitric oxide synthases it has influences on the bio-molecular inflammatory responses and the local capillary growth and circulation.


Assuntos
Aminoácidos/deficiência , Consolidação da Fratura , Fraturas não Consolidadas , Desnutrição , Humanos
9.
Nutrients ; 7(7): 5217-38, 2015 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-26132994

RESUMO

Enhanced arginase-induced arginine consumption is believed to play a key role in the pathogenesis of sickle cell disease-induced end organ failure. Enhancement of arginine availability with L-arginine supplementation exhibited less consistent results; however, L-citrulline, the precursor of L-arginine, may be a promising alternative. In this study, we determined the effects of L-citrulline compared to L-arginine supplementation on arginine-nitric oxide (NO) metabolism, arginine availability and microcirculation in a murine model with acutely-enhanced arginase activity. The effects were measured in six groups of mice (n = 8 each) injected intraperitoneally with sterile saline or arginase (1000 IE/mouse) with or without being separately injected with L-citrulline or L-arginine 1 h prior to assessment of the microcirculation with side stream dark-field (SDF)-imaging or in vivo NO-production with electron spin resonance (ESR) spectroscopy. Arginase injection caused a decrease in plasma and tissue arginine concentrations. L-arginine and L-citrulline supplementation both enhanced plasma and tissue arginine concentrations in arginase-injected mice. However, only the citrulline supplementation increased NO production and improved microcirculatory flow in arginase-injected mice. In conclusion, the present study provides for the first time in vivo experimental evidence that L-citrulline, and not L-arginine supplementation, improves the end organ microcirculation during conditions with acute arginase-induced arginine deficiency by increasing the NO concentration in tissues.


Assuntos
Arginase/metabolismo , Arginina/metabolismo , Citrulina/farmacologia , Microcirculação/efeitos dos fármacos , Óxido Nítrico/biossíntese , Animais , Arginase/farmacologia , Arginina/deficiência , Jejuno/irrigação sanguínea , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microcirculação/fisiologia
10.
Nutrients ; 7(3): 1426-63, 2015 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-25699985

RESUMO

Arginine, a semi-essential amino acid is an important initiator of the immune response. Arginine serves as a precursor in several metabolic pathways in different organs. In the immune response, arginine metabolism and availability is determined by the nitric oxide synthases and the arginase enzymes, which convert arginine into nitric oxide (NO) and ornithine, respectively. Limitations in arginine availability during inflammatory conditions regulate macrophages and T-lymfocyte activation. Furthermore, over the past years more evidence has been gathered which showed that arginine and citrulline deficiencies may underlie the detrimental outcome of inflammatory conditions, such as sepsis and endotoxemia. Not only does the immune response contribute to the arginine deficiency, also the impaired arginine de novo synthesis in the kidney has a key role in the eventual observed arginine deficiency. The complex interplay between the immune response and the arginine-NO metabolism is further underscored by recent data of our group. In this review we give an overview of physiological arginine and citrulline metabolism and we address the experimental and clinical studies in which the arginine-citrulline NO pathway plays an essential role in the immune response, as initiator and therapeutic target.


Assuntos
Arginina/metabolismo , Citrulina/metabolismo , Imunidade , Inflamação/metabolismo , Óxido Nítrico/metabolismo , Sepse/metabolismo , Endotoxemia/imunologia , Endotoxemia/metabolismo , Endotoxemia/patologia , Humanos , Macrófagos , Sepse/imunologia , Sepse/patologia , Linfócitos T
11.
Med Sci Sports Exerc ; 46(11): 2039-46, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24621960

RESUMO

PURPOSE: Splanchnic hypoperfusion is a physiological phenomenon during strenuous exercise. It has been associated with gastrointestinal symptoms and intestinal injury and may hamper athletic performance. We hypothesized that L-citrulline supplementation improves splanchnic perfusion and decreases intestinal injury by enhancing arginine availability. The aim of this study was to determine the effect of L-citrulline intake on splanchnic perfusion, intestinal injury, and barrier function during exercise. METHODS: In this randomized, double-blind crossover study, 10 men cycled for 60 min at 70% of their maximum workload after L-citrulline (10 g) or placebo (L-alanine) intake. Splanchnic perfusion was assessed using gastric air tonometry. Sublingual microcirculation was evaluated by sidestream dark field imaging. Plasma amino acid levels and intestinal fatty acid binding protein concentrations, reflecting enterocyte damage, were assessed every 10 min. Urinary excretion of sugar probes was measured to evaluate intestinal permeability changes. RESULTS: Oral L-citrulline supplementation enhanced plasma citrulline (1840.3 ± 142.3 µM) and arginine levels (238.5 ± 9.1 µM) compared with that in placebo (45.7 ± 4.8 µM and 101.5 ± 6.1 µM, respectively, P < 0.0001), resulting in increased arginine availability. Splanchnic hypoperfusion was prevented during exercise after L-citrulline ingestion (reflected by unaltered gapg-apCO2 levels), whereas gapg-apCO2 increased with placebo treatment (P < 0.01). Accordingly, L-citrulline intake resulted in an increased number of perfused small sublingual vessels compared with that in placebo (7.8 ± 6.0 vs -2.0 ± 2.4, P = 0.06). Furthermore, plasma intestinal fatty acid binding protein levels were attenuated during exercise after L-citrulline supplementation compared with that in placebo (AUC0-60 min, -185% ± 506% vs 1318% ± 553%, P < 0.01). No significant differences were observed for intestinal permeability. CONCLUSIONS: Pre-exercise L-citrulline intake preserves splanchnic perfusion and attenuates intestinal injury during exercise in athletes compared with placebo, probably by enhancing arginine availability. These results suggest that oral L-citrulline supplementation is a promising intervention to combat splanchnic hypoperfusion-induced intestinal compromise.


Assuntos
Citrulina/administração & dosagem , Suplementos Nutricionais , Exercício Físico/fisiologia , Intestino Delgado/irrigação sanguínea , Intestino Delgado/patologia , Circulação Esplâncnica/fisiologia , Administração Oral , Adulto , Arginina/sangue , Ciclismo/fisiologia , Citrulina/sangue , Estudos Cross-Over , Método Duplo-Cego , Enterócitos/patologia , Proteínas de Ligação a Ácido Graxo/sangue , Humanos , Masculino , Microcirculação , Adulto Jovem
12.
PLoS One ; 9(1): e86135, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465919

RESUMO

RATIONALE AND OBJECTIVE: Arginase-1 is an important component of the intricate mechanism regulating arginine availability during immune responses and nitric oxide synthase (NOS) activity. In this study Arg1(fl/fl)/Tie2-Cre(tg/-) mice were developed to investigate the effect of arginase-1 related arginine depletion on NOS2- and NOS3-dependent NO production and jejunal microcirculation under resting and endotoxemic conditions, in mice lacking arginase-1 in endothelial and hematopoietic cells. METHODS AND RESULTS: Arginase-1-deficient mice as compared with control mice exhibited higher plasma arginine concentration concomitant with enhanced NO production in endothelial cells and jejunal tissue during endotoxemia. In parallel, impaired jejunal microcirculation was observed in endotoxemic conditions. Cultured bone-marrow-derived macrophages of arginase-1 deficient animals also presented a higher inflammatory response to endotoxin than control littermates. Since NOS2 competes with arginase for their common substrate arginine during endotoxemia, Nos2 deficient mice were also studied under endotoxemic conditions. As Nos2(-/-) macrophages showed an impaired inflammatory response to endotoxin compared to wild-type macrophages, NOS2 is potentially involved. A strongly reduced NO production in Arg1(fl/fl)/Tie2-Cre(tg/-) mice following infusion of the NOS2 inhibitor 1400W further implicated NOS2 in the enhanced capacity to produce NO production Arg1(fl/fl)/Tie2-Cre(tg/-) mice. CONCLUSIONS: Reduced arginase-1 activity in Arg1(fl/fl)/Tie2-Cre(tg/-) mice resulted in increased inflammatory response and NO production by NOS2, accompanied by a depressed microcirculatory flow during endotoxemia. Thus, arginase-1 deficiency facilitates a NOS2-mediated pro-inflammatory activity at the expense of NOS3-mediated endothelial relaxation.


Assuntos
Arginase/metabolismo , Arginina/sangue , Endotoxemia/sangue , Endotoxemia/enzimologia , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/biossíntese , Animais , Contagem de Células , Citrulina/sangue , Citocinas/biossíntese , Integrases/metabolismo , Jejuno/irrigação sanguínea , Jejuno/enzimologia , Jejuno/patologia , Lipopolissacarídeos , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microcirculação , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/metabolismo , Nitritos/metabolismo , Especificidade de Órgãos/efeitos dos fármacos , Ornitina/sangue , Perfusão , Peroxidase/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptor TIE-2/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...