Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 1: e10, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21364612

RESUMO

Caloric restriction and autophagy-inducing pharmacological agents can prolong lifespan in model organisms including mice, flies, and nematodes. In this study, we show that transgenic expression of Sirtuin-1 induces autophagy in human cells in vitro and in Caenorhabditis elegans in vivo. The knockdown or knockout of Sirtuin-1 prevented the induction of autophagy by resveratrol and by nutrient deprivation in human cells as well as by dietary restriction in C. elegans. Conversely, Sirtuin-1 was not required for the induction of autophagy by rapamycin or p53 inhibition, neither in human cells nor in C. elegans. The knockdown or pharmacological inhibition of Sirtuin-1 enhanced the vulnerability of human cells to metabolic stress, unless they were stimulated to undergo autophagy by treatment with rapamycin or p53 inhibition. Along similar lines, resveratrol and dietary restriction only prolonged the lifespan of autophagy-proficient nematodes, whereas these beneficial effects on longevity were abolished by the knockdown of the essential autophagic modulator Beclin-1. We conclude that autophagy is universally required for the lifespan-prolonging effects of caloric restriction and pharmacological Sirtuin-1 activators.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Autofagia , Restrição Calórica , Longevidade/efeitos dos fármacos , Sirtuína 1/metabolismo , Estilbenos/farmacologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Caenorhabditis elegans/metabolismo , Linhagem Celular Tumoral , Humanos , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Resveratrol , Sirolimo/farmacologia , Sirtuína 1/genética , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/metabolismo
2.
Biol Bull ; 216(2): 103-12, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19366921

RESUMO

The escape swim response of the marine mollusc Tritonia diomedea is a well-established model system for studies of the neural basis of behavior. Although the swim neural network is reasonably well understood, little is known about the transmitters used by its constituent neurons. In the present study, we provide immunocytochemical and electrophysiological evidence that the S-cells, the afferent neurons that detect aversive skin stimuli and in turn trigger Tritonia's escape swim response, use glutamate as their transmitter. First, immunolabeling revealed that S-cell somata contain elevated levels of glutamate compared to most other neurons in the Tritonia brain, consistent with findings from glutamatergic neurons in many species. Second, pressure-applied puffs of glutamate produced the same excitatory response in the target neurons of the S-cells as the naturally released S-cell transmitter itself. Third, the glutamate receptor antagonist CNQX completely blocked S-cell synaptic connections. These findings support glutamate as a transmitter used by the S-cells, and will facilitate studies using this model system to explore a variety of issues related to the neural basis of behavior.


Assuntos
Encéfalo/metabolismo , Reação de Fuga/fisiologia , Ácido Glutâmico/metabolismo , Neurônios Aferentes/metabolismo , Natação/fisiologia , Lesma Marinha/fisiologia , 6-Ciano-7-nitroquinoxalina-2,3-diona , Análise de Variância , Animais , Eletrofisiologia , Imuno-Histoquímica , Modelos Biológicos , Lesma Marinha/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...