Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-443592

RESUMO

Here we have employed SynCon(R) design technology to construct a DNA vaccine expressing a pan-Spike immunogen (INO-4802) to induce broad immunity across SARS-CoV-2 variants of concern (VOC). Compared to WT and VOC-matched vaccines which showed reduced cross-neutralizing activity, INO-4802 induced potent neutralizing antibodies and T cell responses against WT as well as B.1.1.7, P.1, and B.1.351 VOCs in a murine model. In addition, a hamster challenge model demonstrated that INO-4802 conferred superior protection following intranasal B.1.351 challenge. Protection against weight loss associated with WT, B.1.1.7, P.1 and B.1.617.2 challenge was also demonstrated. Vaccinated hamsters showed enhanced humoral responses against VOC in a heterologous WT vaccine prime and INO-4802 boost setting. These results demonstrate the potential of the pan-SARS-CoV-2 vaccine, INO-4802 to induce cross-reactive immune responses against emerging VOC as either a standalone vaccine, or as a potential boost for individuals previously immunized with WT-matched vaccines.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-433558

RESUMO

Global containment of COVID-19 still requires accessible and affordable vaccines for low- and middle-income countries (LMICs).1 Recently approved vaccines provide needed interventions, albeit at prices that may limit their global access.2 Subunit vaccines based on recombinant proteins are suited for large-volume microbial manufacturing to yield billions of doses annually, minimizing their manufacturing costs.3 These types of vaccines are well-established, proven interventions with multiple safe and efficacious commercial examples.4-6 Many vaccine candidates of this type for SARS-CoV-2 rely on sequences containing the receptor-binding domain (RBD), which mediates viral entry to cells via ACE2.7,8 Here we report an engineered sequence variant of RBD that exhibits high-yield manufacturability, high-affinity binding to ACE2, and enhanced immunogenicity after a single dose in mice compared to the Wuhan-Hu-1 variant used in current vaccines. Antibodies raised against the engineered protein exhibited heterotypic binding to the RBD from two recently reported SARS-CoV-2 variants of concern (501Y.V1/V2). Presentation of the engineered RBD on a designed virus-like particle (VLP) also reduced weight loss in hamsters upon viral challenge.

3.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-251249

RESUMO

We report the first Human Immune System (HIS)-humanized mouse model ("DRAGA": HLA-A2.HLA-DR4.Rag1KO.IL-2R{gamma}cKO.NOD) for COVID-19 research. This mouse is reconstituted with human cord blood-derived, HLA-matched hematopoietic stem cells. It engrafts human epi/endothelial cells expressing the human ACE2 receptor for SARS-CoV-2 and TMPRSS2 serine protease co-localized on lung epithelia. HIS-DRAGA mice sustained SARS-CoV-2 infection, showing deteriorated clinical condition, replicating virus in the lungs, and human-like lung immunopathology including T-cell infiltrates, microthrombi and pulmonary sequelae. Among T-cell infiltrates, lung-resident (CD103+) CD8+ T cells were sequestered in epithelial (CD326+) lung niches and secreted granzyme B and perforin, indicating cytotoxic potential. Infected mice also developed antibodies against the SARS-CoV-2 viral proteins. Hence, HIS-DRAGA mice showed unique advantages as a surrogate in vivo human model for studying SARS-CoV-2 immunopathology and for testing the safety and efficacy of candidate vaccines and therapeutics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA