Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Methods ; 21(5): 868-881, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38374263

RESUMO

The human bone marrow (BM) niche sustains hematopoiesis throughout life. We present a method for generating complex BM-like organoids (BMOs) from human induced pluripotent stem cells (iPSCs). BMOs consist of key cell types that self-organize into spatially defined three-dimensional structures mimicking cellular, structural and molecular characteristics of the hematopoietic microenvironment. Functional properties of BMOs include the presence of an in vivo-like vascular network, the presence of multipotent mesenchymal stem/progenitor cells, the support of neutrophil differentiation and responsiveness to inflammatory stimuli. Single-cell RNA sequencing revealed a heterocellular composition including the presence of a hematopoietic stem/progenitor (HSPC) cluster expressing genes of fetal HSCs. BMO-derived HSPCs also exhibited lymphoid potential and a subset demonstrated transient engraftment potential upon xenotransplantation in mice. We show that the BMOs could enable the modeling of hematopoietic developmental aspects and inborn errors of hematopoiesis, as shown for human VPS45 deficiency. Thus, iPSC-derived BMOs serve as a physiologically relevant in vitro model of the human BM microenvironment to study hematopoietic development and BM diseases.


Assuntos
Diferenciação Celular , Hematopoese , Células-Tronco Pluripotentes Induzidas , Organoides , Humanos , Organoides/citologia , Organoides/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Animais , Camundongos , Células-Tronco Hematopoéticas/citologia , Medula Óssea/metabolismo , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Técnicas de Cultura de Células/métodos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo
2.
Sci Transl Med ; 15(720): eadf3357, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37910599

RESUMO

The CXC chemokine receptor 4 (CXCR4) in endothelial cells (ECs) and vascular smooth muscle cells (VSMCs) is crucial for vascular integrity. The atheroprotective functions of CXCR4 in vascular cells may be counteracted by atherogenic functions in other nonvascular cell types. Thus, strategies for cell-specifically augmenting CXCR4 function in vascular cells are crucial if this receptor is to be useful as a therapeutic target in treating atherosclerosis and other vascular disorders. Here, we identified miR-206-3p as a vascular-specific CXCR4 repressor and exploited a target-site blocker (CXCR4-TSB) that disrupted the interaction of miR-206-3p with CXCR4 in vitro and in vivo. In vitro, CXCR4-TSB enhanced CXCR4 expression in human and murine ECs and VSMCs to modulate cell viability, proliferation, and migration. Systemic administration of CXCR4-TSB in Apoe-deficient mice enhanced Cxcr4 expression in ECs and VSMCs in the walls of blood vessels, reduced vascular permeability and monocyte adhesion to endothelium, and attenuated the development of diet-induced atherosclerosis. CXCR4-TSB also increased CXCR4 expression in B cells, corroborating its atheroprotective role in this cell type. Analyses of human atherosclerotic plaque specimens revealed a decrease in CXCR4 and an increase in miR-206-3p expression in advanced compared with early lesions, supporting a role for the miR-206-3p-CXCR4 interaction in human disease. Disrupting the miR-206-3p-CXCR4 interaction in a cell-specific manner with target-site blockers is a potential therapeutic approach that could be used to treat atherosclerosis and other vascular diseases.


Assuntos
Aterosclerose , MicroRNAs , Placa Aterosclerótica , Humanos , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Células Endoteliais/metabolismo , Receptores CXCR4/metabolismo , Aterosclerose/genética , Placa Aterosclerótica/patologia , Proliferação de Células , Miócitos de Músculo Liso/metabolismo , Movimento Celular
4.
Methods Mol Biol ; 2597: 59-75, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36374414

RESUMO

At the moment, many researchers are using in vitro techniques to investigate chemokine-driven leukocyte adhesion/recruitment, for example, by using a transwell or flow chamber system. Here we describe a more physiologically relevant, sophisticated, and highly flexible method to study leukocyte adhesion ex vivo in fresh murine carotid arteries under arterial flow conditions. This model mimics an in vivo situation and allows the combination of leukocytes and arteries isolated from different donors in one experiment, generating information on both vascular and leukocyte adhesive properties of both donors. This method provides a versatile, highly physiologically relevant model to investigate leukocyte adhesion.


Assuntos
Quimiocinas , Leucócitos , Camundongos , Animais , Adesão Celular/fisiologia , Leucócitos/fisiologia , Artérias Carótidas , Perfusão , Endotélio Vascular/fisiologia
5.
Circ Res ; 131(8): 701-712, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36102188

RESUMO

BACKGROUND: Amino acid metabolism is crucial for inflammatory processes during atherogenesis. The endogenous amino acid homoarginine is a robust biomarker for cardiovascular outcome and mortality with high levels being protective. However, the underlying mechanisms remain elusive. We investigated the effect of homoarginine supplementation on atherosclerotic plaque development with a particular focus on inflammation. METHODS: Female ApoE-deficient mice were supplemented with homoarginine (14 mg/L) in drinking water starting 2 weeks before and continuing throughout a 6-week period of Western-type diet feeding. Control mice received normal drinking water. Immunohistochemistry and flow cytometry were used for plaque- and immunological phenotyping. T cells were characterized using mass spectrometry-based proteomics, by functional in vitro approaches, for example, proliferation and migration/chemotaxis assays as well as by super-resolution microscopy. RESULTS: Homoarginine supplementation led to a 2-fold increase in circulating homoarginine concentrations. Homoarginine-treated mice exhibited reduced atherosclerosis in the aortic root and brachiocephalic trunk. A substantial decrease in CD3+ T cells in the atherosclerotic lesions suggested a T-cell-related effect of homoarginine supplementation, which was mainly attributed to CD4+ T cells. Macrophages, dendritic cells, and B cells were not affected. CD4+ T-cell proteomics and subsequent pathway analysis together with in vitro studies demonstrated that homoarginine profoundly modulated the spatial organization of the T-cell actin cytoskeleton and increased filopodia formation via inhibition of Myh9 (myosin heavy chain 9). Further mechanistic studies revealed an inhibition of T-cell proliferation as well as a striking impairment of the migratory capacities of T cells in response to relevant chemokines by homoarginine, all of which likely contribute to its atheroprotective effects. CONCLUSIONS: Our study unravels a novel mechanism by which the amino acid homoarginine reduces atherosclerosis, establishing that homoarginine modulates the T-cell cytoskeleton and thereby mitigates T-cell functions important during atherogenesis. These findings provide a molecular explanation for the beneficial effects of homoarginine in atherosclerotic cardiovascular disease.


Assuntos
Aterosclerose , Água Potável , Placa Aterosclerótica , Aminoácidos , Animais , Apolipoproteínas E , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Aterosclerose/prevenção & controle , Feminino , Homoarginina/farmacologia , Camundongos , Cadeias Pesadas de Miosina , Linfócitos T/metabolismo
6.
Cell Mol Life Sci ; 79(10): 512, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36094626

RESUMO

To fulfil its orchestration of immune cell trafficking, a network of chemokines and receptors developed that capitalizes on specificity, redundancy, and functional selectivity. The discovery of heteromeric interactions in the chemokine interactome has expanded the complexity within this network. Moreover, some inflammatory mediators, not structurally linked to classical chemokines, bind to chemokine receptors and behave as atypical chemokines (ACKs). We identified macrophage migration inhibitory factor (MIF) as an ACK that binds to chemokine receptors CXCR2 and CXCR4 to promote atherogenic leukocyte recruitment. Here, we hypothesized that chemokine-chemokine interactions extend to ACKs and that MIF forms heterocomplexes with classical chemokines. We tested this hypothesis by using an unbiased chemokine protein array. Platelet chemokine CXCL4L1 (but not its variant CXCL4 or the CXCR2/CXCR4 ligands CXCL8 or CXCL12) was identified as a candidate interactor. MIF/CXCL4L1 complexation was verified by co-immunoprecipitation, surface plasmon-resonance analysis, and microscale thermophoresis, also establishing high-affinity binding. We next determined whether heterocomplex formation modulates inflammatory/atherogenic activities of MIF. Complex formation was observed to inhibit MIF-elicited T-cell chemotaxis as assessed by transwell migration assay and in a 3D-matrix-based live cell-imaging set-up. Heterocomplexation also blocked MIF-triggered migration of microglia in cortical cultures in situ, as well as MIF-mediated monocyte adhesion on aortic endothelial cell monolayers under flow stress conditions. Of note, CXCL4L1 blocked binding of Alexa-MIF to a soluble surrogate of CXCR4 and co-incubation with CXCL4L1 attenuated MIF responses in HEK293-CXCR4 transfectants, indicating that complex formation interferes with MIF/CXCR4 pathways. Because MIF and CXCL4L1 are platelet-derived products, we finally tested their role in platelet activation. Multi-photon microscopy, FLIM-FRET, and proximity-ligation assay visualized heterocomplexes in platelet aggregates and in clinical human thrombus sections obtained from peripheral artery disease (PAD) in patients undergoing thrombectomy. Moreover, heterocomplexes inhibited MIF-stimulated thrombus formation under flow and skewed the lamellipodia phenotype of adhering platelets. Our study establishes a novel molecular interaction that adds to the complexity of the chemokine interactome and chemokine/receptor-network. MIF/CXCL4L1, or more generally, ACK/CXC-motif chemokine heterocomplexes may be target structures that can be exploited to modulate inflammation and thrombosis.


Assuntos
Aterosclerose , Fatores Inibidores da Migração de Macrófagos , Trombose , Aterosclerose/metabolismo , Células HEK293 , Humanos , Inflamação/metabolismo , Oxirredutases Intramoleculares , Fatores Inibidores da Migração de Macrófagos/metabolismo , Fator Plaquetário 4 , Receptores de Interleucina-8B/química , Receptores de Interleucina-8B/genética , Receptores de Interleucina-8B/metabolismo
7.
Nat Commun ; 13(1): 5004, 2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36008417

RESUMO

Amyloid self-assembly is linked to numerous devastating cell-degenerative diseases. However, designing inhibitors of this pathogenic process remains a major challenge. Cross-interactions between amyloid-ß peptide (Aß) and islet amyloid polypeptide (IAPP), key polypeptides of Alzheimer's disease (AD) and type 2 diabetes (T2D), have been suggested to link AD with T2D pathogenesis. Here, we show that constrained peptides designed to mimic the Aß amyloid core (ACMs) are nanomolar cross-amyloid inhibitors of both IAPP and Aß42 and effectively suppress reciprocal cross-seeding. Remarkably, ACMs act by co-assembling with IAPP or Aß42 into amyloid fibril-resembling but non-toxic nanofibers and their highly ordered superstructures. Co-assembled nanofibers exhibit various potentially beneficial features including thermolability, proteolytic degradability, and effective cellular clearance which are reminiscent of labile/reversible functional amyloids. ACMs are thus promising leads for potent anti-amyloid drugs in both T2D and AD while the supramolecular nanofiber co-assemblies should inform the design of novel functional (hetero-)amyloid-based nanomaterials for biomedical/biotechnological applications.


Assuntos
Doença de Alzheimer , Amiloidose , Diabetes Mellitus Tipo 2 , Nanofibras , Doença de Alzheimer/tratamento farmacológico , Amiloide/farmacologia , Peptídeos beta-Amiloides/química , Proteínas Amiloidogênicas , Diabetes Mellitus Tipo 2/tratamento farmacológico , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química
9.
Basic Res Cardiol ; 117(1): 30, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35674847

RESUMO

Atherosclerosis is the foundation of potentially fatal cardiovascular diseases and it is characterized by plaque formation in large arteries. Current treatments aimed at reducing atherosclerotic risk factors still allow room for a large residual risk; therefore, novel therapeutic candidates targeting inflammation are needed. The endothelium is the starting point of vascular inflammation underlying atherosclerosis and we could previously demonstrate that the chemokine axis CXCL12-CXCR4 plays an important role in disease development. However, the role of ACKR3, the alternative and higher affinity receptor for CXCL12 remained to be elucidated. We studied the role of arterial ACKR3 in atherosclerosis using western diet-fed Apoe-/- mice lacking Ackr3 in arterial endothelial as well as smooth muscle cells. We show for the first time that arterial endothelial deficiency of ACKR3 attenuates atherosclerosis as a result of diminished arterial adhesion as well as invasion of immune cells. ACKR3 silencing in inflamed human coronary artery endothelial cells decreased adhesion molecule expression, establishing an initial human validation of ACKR3's role in endothelial adhesion. Concomitantly, ACKR3 silencing downregulated key mediators in the MAPK pathway, such as ERK1/2, as well as the phosphorylation of the NF-kB p65 subunit. Endothelial cells in atherosclerotic lesions also revealed decreased phospho-NF-kB p65 expression in ACKR3-deficient mice. Lack of smooth muscle cell-specific as well as hematopoietic ACKR3 did not impact atherosclerosis in mice. Collectively, our findings indicate that arterial endothelial ACKR3 fuels atherosclerosis by mediating endothelium-immune cell adhesion, most likely through inflammatory MAPK and NF-kB pathways.


Assuntos
Aterosclerose , Placa Aterosclerótica , Receptores CXCR , Animais , Aterosclerose/metabolismo , Adesão Celular , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Inflamação/metabolismo , Camundongos , Camundongos Knockout para ApoE , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Receptores CXCR/metabolismo , Fator de Transcrição RelA/metabolismo
10.
Arterioscler Thromb Vasc Biol ; 42(8): 1023-1036, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35708027

RESUMO

BACKGROUND: Maladapted endothelial cells (ECs) secrete ENPP2 (ectonucleotide pyrophosphatase/phosphodiesterase 2; autotaxin)-a lysophospholipase D that generates lysophosphatidic acids (LPAs). ENPP2 derived from the arterial wall promotes atherogenic monocyte adhesion induced by generating LPAs, such as arachidonoyl-LPA (LPA20:4), from oxidized lipoproteins. Here, we aimed to determine the role of endothelial ENPP2 in the production of LPAs and atherosclerosis. METHODS: We quantified atherosclerosis in mice harboring loxP-flanked Enpp2 alleles crossed with Apoe-/- mice expressing tamoxifen-inducible Cre recombinase under the control of the EC-specific bone marrow X kinase promoter after 12 weeks of high-fat diet feeding. RESULTS: A tamoxifen-induced EC-specific Enpp2 knockout decreased atherosclerosis, accumulation of lesional macrophages, monocyte adhesion, and expression of endothelial CXCL (C-X-C motif chemokine ligand) 1 in male and female Apoe-/- mice. In vitro, ENPP2 mediated the mildly oxidized LDL (low-density lipoprotein)-induced expression of CXCL1 in aortic ECs by generating LPA20:4, palmitoyl-LPA (LPA16:0), and oleoyl-LPA (LPA18:1). ENPP2 and its activity were detected on the endothelial surface by confocal imaging. The expression of endothelial Enpp2 established a strong correlation between the plasma levels of LPA16:0, stearoyl-LPA (LPA18:0), and LPA18:1 and plaque size and a strong negative correlation between the LPA levels and ENPP2 activity in the plasma. Moreover, endothelial Enpp2 knockout increased the weight of high-fat diet-fed male Apoe-/- mice. CONCLUSIONS: We demonstrated that the expression of ENPP2 in ECs promotes atherosclerosis and endothelial inflammation in a sex-independent manner. This might be due to the generation of LPA20:4, LPA16:0, and LPA18:1 from mildly oxidized lipoproteins on the endothelial surface.


Assuntos
Aterosclerose , Células Endoteliais , Diester Fosfórico Hidrolases , Animais , Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Feminino , Lisofosfolipídeos , Masculino , Camundongos , Camundongos Knockout para ApoE , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/metabolismo , Pirofosfatases/metabolismo , Tamoxifeno
11.
Nature ; 605(7908): 152-159, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35477759

RESUMO

Atherosclerotic plaques develop in the inner intimal layer of arteries and can cause heart attacks and strokes1. As plaques lack innervation, the effects of neuronal control on atherosclerosis remain unclear. However, the immune system responds to plaques by forming leukocyte infiltrates in the outer connective tissue coat of arteries (the adventitia)2-6. Here, because the peripheral nervous system uses the adventitia as its principal conduit to reach distant targets7-9, we postulated that the peripheral nervous system may directly interact with diseased arteries. Unexpectedly, widespread neuroimmune cardiovascular interfaces (NICIs) arose in mouse and human atherosclerosis-diseased adventitia segments showed expanded axon networks, including growth cones at axon endings near immune cells and media smooth muscle cells. Mouse NICIs established a structural artery-brain circuit (ABC): abdominal adventitia nociceptive afferents10-14 entered the central nervous system through spinal cord T6-T13 dorsal root ganglia and were traced to higher brain regions, including the parabrachial and central amygdala neurons; and sympathetic efferent neurons projected from medullary and hypothalamic neurons to the adventitia through spinal intermediolateral neurons and both coeliac and sympathetic chain ganglia. Moreover, ABC peripheral nervous system components were activated: splenic sympathetic and coeliac vagus nerve activities increased in parallel to disease progression, whereas coeliac ganglionectomy led to the disintegration of adventitial NICIs, reduced disease progression and enhanced plaque stability. Thus, the peripheral nervous system uses NICIs to assemble a structural ABC, and therapeutic intervention in the ABC attenuates atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Aterosclerose/prevenção & controle , Progressão da Doença , Gânglios Espinais , Gânglios Simpáticos , Camundongos , Neurônios/fisiologia , Placa Aterosclerótica/prevenção & controle
12.
Blood ; 139(17): 2691-2705, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35313337

RESUMO

The prevention and treatment of arterial thrombosis continue to be clinically challenging, and understanding the relevant molecular mechanisms in detail may facilitate the quest to identify novel targets and therapeutic approaches that improve protection from ischemic and bleeding events. The chemokine CXCL12 augments collagen-induced platelet aggregation by activating its receptor CXCR4. Here we show that inhibition of CXCR4 attenuates platelet aggregation induced by collagen or human plaque homogenate under static and arterial flow conditions by antagonizing the action of platelet-secreted CXCL12. We further show that platelet-specific CXCL12 deficiency in mice limits arterial thrombosis by affecting thrombus growth and stability without increasing tail bleeding time. Accordingly, neointimal lesion formation after carotid artery injury was attenuated in these mice. Mechanistically, CXCL12 activated via CXCR4 a signaling cascade involving Bruton's tyrosine kinase (Btk) that led to integrin αIIbß3 activation, platelet aggregation, and granule release. The heterodimeric interaction between CXCL12 and CCL5 can inhibit CXCL12-mediated effects as mimicked by CCL5-derived peptides such as [VREY]4. An improved variant of this peptide, i[VREY]4, binds to CXCL12 in a complex with CXCR4 on the surface of activated platelets, thereby inhibiting Btk activation and preventing platelet CXCL12-dependent arterial thrombosis. In contrast to standard antiplatelet therapies such as aspirin or P2Y12 inhibition, i[VREY]4 reduced CXCL12-induced platelet aggregation and yet did not prolong in vitro bleeding time. We provide evidence that platelet-derived CXCL12 is involved in arterial thrombosis and can be specifically targeted by peptides that harbor potential therapeutic value against atherothrombosis.


Assuntos
Plaquetas , Trombose , Tirosina Quinase da Agamaglobulinemia/metabolismo , Animais , Plaquetas/metabolismo , Quimiocina CXCL12/metabolismo , Colágeno/metabolismo , Camundongos , Ativação Plaquetária , Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Trombose/metabolismo
13.
Methods Mol Biol ; 2419: 747-763, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35237999

RESUMO

Recent advances in cardiovascular research have led to a more comprehensive understanding of molecular mechanisms of atherosclerosis. It has become apparent that the disease involves three layers of the arterial wall: the intima, the media, and a connective tissue coat termed the adventitia. It is also now appreciated that arteries are surrounded by adipose and neuronal tissues. In addition, adjacent to and within the adventitia, arteries are embedded in a loose connective tissue containing blood vessels (vasa vasora) and lymph vessels, artery-draining lymph nodes and components of the peripheral nervous system, including periarterial nerves and ganglia. During atherogenesis, each of these tissues undergoes marked structural and cellular alterations. We propose that a better understanding of these cell-cell and cell-tissue interactions may considerably advance our understanding of cardiovascular disease pathogenesis. Methods to acquire subcellular optical access to the intact tissues surrounding healthy and diseased arteries are urgently needed to achieve these aims. Tissue clearing is a landmark next-generation, three-dimensional (3D) microscopy technique that allows to image large-scale hitherto inaccessible intact deep tissue compartments. It allows for detailed reconstructions of arteries by a combination of labelling, clearing, advanced microscopies and other imaging and data-analysis tools. Here, we describe two distinct tissue clearing protocols; solvent-based modified three-dimensional imaging of solvent-cleared organs (3DISCO) clearing and another using aqueous-based 2,2'-thiodiethanol (TDE) clearing, both of which complement each other.


Assuntos
Aterosclerose , Imageamento Tridimensional , Artérias , Humanos , Imageamento Tridimensional/métodos , Microscopia
14.
Circulation ; 144(13): 1059-1073, 2021 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-34233454

RESUMO

BACKGROUND: The necrotic core partly formed by ineffective efferocytosis increases the risk of an atherosclerotic plaque rupture. Microribonucleic acids contribute to necrotic core formation by regulating efferocytosis and macrophage apoptosis. Atherosclerotic plaque rupture occurs at increased frequency in the early morning, indicating diurnal changes in plaque vulnerability. Although circadian rhythms play a role in atherosclerosis, the molecular clock output pathways that control plaque composition and rupture susceptibility are unclear. METHODS: Circadian gene expression, necrotic core size, apoptosis, and efferocytosis in aortic lesions were investigated at different times of the day in Apoe-/-Mir21+/+ mice and Apoe-/-Mir21-/- mice after consumption of a high-fat diet for 12 weeks. Genome-wide gene expression and lesion formation were analyzed in bone marrow-transplanted mice. Diurnal changes in apoptosis and clock gene expression were determined in human atherosclerotic lesions. RESULTS: The expression of molecular clock genes, lesional apoptosis, and necrotic core size were diurnally regulated in Apoe-/- mice. Efferocytosis did not match the diurnal increase in apoptosis at the beginning of the active phase. However, in parallel with apoptosis, expression levels of oscillating Mir21 strands decreased in the mouse atherosclerotic aorta. Mir21 knockout abolished circadian regulation of apoptosis and reduced necrotic core size but did not affect core clock gene expression. Further, Mir21 knockout upregulated expression of proapoptotic Xaf1 (XIAP-associated factor 1) in the atherosclerotic aorta, which abolished circadian expression of Xaf1. The antiapoptotic effect of Mir21 was mediated by noncanonical targeting of Xaf1 through both Mir21 strands. Mir21 knockout in bone marrow cells also reduced atherosclerosis and necrotic core size. Circadian regulation of clock gene expression was confirmed in human atherosclerotic lesions. Apoptosis oscillated diurnally in phase with XAF1 expression, demonstrating an early morning peak antiphase to that of the Mir21 strands. CONCLUSIONS: Our findings suggest that the molecular clock in atherosclerotic lesions induces a diurnal rhythm of apoptosis regulated by circadian Mir21 expression in macrophages that is not matched by efferocytosis, thus increasing the size of the necrotic core.


Assuntos
Aterosclerose/metabolismo , MicroRNAs/metabolismo , Animais , Apoptose/fisiologia , Aterosclerose/genética , Aterosclerose/patologia , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos C57BL
15.
Nat Commun ; 12(1): 3754, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145241

RESUMO

Atherosclerosis is a major underlying cause of cardiovascular disease. Previous studies showed that inhibition of the co-stimulatory CD40 ligand (CD40L)-CD40 signaling axis profoundly attenuates atherosclerosis. As CD40L exerts multiple functions depending on the cell-cell interactions involved, we sought to investigate the function of the most relevant CD40L-expressing cell types in atherosclerosis: T cells and platelets. Atherosclerosis-prone mice with a CD40L-deficiency in CD4+ T cells display impaired Th1 polarization, as reflected by reduced interferon-γ production, and smaller atherosclerotic plaques containing fewer T-cells, smaller necrotic cores, an increased number of smooth muscle cells and thicker fibrous caps. Mice with a corresponding CD40-deficiency in CD11c+ dendritic cells phenocopy these findings, suggesting that the T cell-dendritic cell CD40L-CD40 axis is crucial in atherogenesis. Accordingly, sCD40L/sCD40 and interferon-γ concentrations in carotid plaques and plasma are positively correlated in patients with cerebrovascular disease. Platelet-specific deficiency of CD40L does not affect atherogenesis but ameliorates atherothrombosis. Our results establish divergent and cell-specific roles of CD40L-CD40 in atherosclerosis, which has implications for therapeutic strategies targeting this pathway.


Assuntos
Aterosclerose/patologia , Linfócitos T CD4-Positivos/metabolismo , Antígenos CD40/metabolismo , Ligante de CD40/metabolismo , Interferon gama/metabolismo , Placa Aterosclerótica/patologia , Animais , Plaquetas/metabolismo , Linfócitos T CD4-Positivos/citologia , Doenças Cardiovasculares/patologia , Células Dendríticas/imunologia , Camundongos , Camundongos Knockout , Miócitos de Músculo Liso/citologia , Transdução de Sinais/fisiologia , Trombose/patologia
16.
Nat Biomed Eng ; 5(11): 1246-1260, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34083764

RESUMO

The efficacy of adoptive cell therapy for solid tumours is hampered by the poor accumulation of the transferred T cells in tumour tissue. Here, we show that forced expression of C-X-C chemokine receptor type 6 (whose ligand is highly expressed by human and murine pancreatic cancer cells and tumour-infiltrating immune cells) in antigen-specific T cells enhanced the recognition and lysis of pancreatic cancer cells and the efficacy of adoptive cell therapy for pancreatic cancer. In mice with subcutaneous pancreatic tumours treated with T cells with either a transgenic T-cell receptor or a murine chimeric antigen receptor targeting the tumour-associated antigen epithelial cell adhesion molecule, and in mice with orthotopic pancreatic tumours or patient-derived xenografts treated with T cells expressing a chimeric antigen receptor targeting mesothelin, the T cells exhibited enhanced intratumoral accumulation, exerted sustained anti-tumoral activity and prolonged animal survival only when co-expressing C-X-C chemokine receptor type 6. Arming tumour-specific T cells with tumour-specific chemokine receptors may represent a promising strategy for the realization of adoptive cell therapy for solid tumours.


Assuntos
Imunoterapia Adotiva , Neoplasias Pancreáticas , Receptores CXCR6/metabolismo , Linfócitos T , Animais , Terapia Baseada em Transplante de Células e Tecidos , Mesotelina , Camundongos , Neoplasias Pancreáticas/terapia , Receptores de Quimiocinas/genética
17.
Sci Rep ; 11(1): 2671, 2021 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-33514757

RESUMO

Ex vivo characterisation of arterial biomechanics enables detailed discrimination of the various cellular and extracellular contributions to arterial stiffness. However, ex vivo biomechanical studies are commonly performed under quasi-static conditions, whereas dynamic biomechanical behaviour (as relevant in vivo) may differ substantially. Hence, we aim to (1) develop an integrated set-up for quasi-static and dynamic biaxial biomechanical testing, (2) quantify set-up reproducibility, and (3) illustrate the differences in measured arterial stiffness between quasi-static and dynamic conditions. Twenty-two mouse carotid arteries were mounted between glass micropipettes and kept fully vasodilated. While recording pressure, axial force (F), and inner diameter, arteries were exposed to (1) quasi-static pressure inflation from 0 to 200 mmHg; (2) 300 bpm dynamic pressure inflation (peaking at 80/120/160 mmHg); and (3) axial stretch (λz) variation at constant pressures of 10/60/100/140/200 mmHg. Measurements were performed in duplicate. Single-point pulse wave velocities (PWV; Bramwell-Hill) and axial stiffness coefficients (cax = dF/dλz) were calculated at the in vivo value of λz. Within-subject coefficients of variation were ~ 20%. Dynamic PWVs were consistently higher than quasi-static PWVs (p < 0.001); cax increased with increasing pressure. We demonstrated the feasibility of ex vivo biomechanical characterisation of biaxially-loaded murine carotid arteries under pulsatile conditions, and quantified reproducibility allowing for well-powered future study design.


Assuntos
Pressão Sanguínea , Artérias Carótidas , Modelos Cardiovasculares , Animais , Fenômenos Biomecânicos , Velocidade do Fluxo Sanguíneo , Camundongos , Análise de Onda de Pulso , Rigidez Vascular
18.
Front Physiol ; 12: 814434, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35095571

RESUMO

Accurate information on vascular smooth muscle cell (VSMC) content, orientation, and distribution in blood vessels is indispensable to increase understanding of arterial remodeling and to improve modeling of vascular biomechanics. We have previously proposed an analysis method to automatically characterize VSMC orientation and transmural distribution in murine carotid arteries under well-controlled biomechanical conditions. However, coincident nuclei, erroneously detected as one large nucleus, were excluded from the analysis, hampering accurate VSMC content characterization and distorting transmural distributions. In the present study, therefore, we aim to (1) improve the previous method by adding a "nucleus splitting" procedure to split coinciding nuclei, (2) evaluate the accuracy of this novel method, and (3) test this method in a mouse model of VSMC apoptosis. After euthanasia, carotid arteries from SM22α-hDTR Apoe -/- and control Apoe -/- mice were bluntly dissected, excised, mounted in a biaxial biomechanical tester and brought to in vivo axial stretch and a pressure of 100 mmHg. Nuclei and elastin fibers were then stained using Syto-41 and Eosin-Y, respectively, and imaged using 3D two-photon laser scanning microscopy. Nuclei were segmented from images and coincident nuclei were split. The nucleus splitting procedure determines the likelihood that voxel pairs within coincident nuclei belong to the same nucleus and utilizes these likelihoods to identify individual nuclei using spectral clustering. Manual nucleus counts were used as a reference to assess the performance of our splitting procedure. Before and after splitting, automatic nucleus counts differed -26.6 ± 9.90% (p < 0.001) and -1.44 ± 7.05% (p = 0.467) from the manual reference, respectively. Whereas the slope of the relative difference between the manual and automated counts as a function of the manual count was significantly negative before splitting (p = 0.008), this slope became insignificant after splitting (p = 0.653). Smooth muscle apoptosis led to a 33.7% decrease in VSMC density (p = 0.008). Nucleus splitting improves the accuracy of automated cell content quantification in murine carotid arteries and overcomes the progressively worsening problem of coincident nuclei with increasing cell content in vessels. The presented image analysis framework provides a robust tool to quantify cell content, orientation, shape, and distribution in vessels to inform experimental and advanced computational studies on vascular structure and function.

19.
Chembiochem ; 22(6): 1012-1019, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-33125165

RESUMO

Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine and atypical chemokine with a key role in inflammatory diseases including atherosclerosis. Key atherogenic functions of MIF are mediated by noncognate interaction with the chemokine receptor CXCR2. The MIF N-like loop comprising the sequence 47-56 is an important structural determinant of the MIF/CXCR2 interface and MIF(47-56) blocks atherogenic MIF activities. However, the mechanism and critical structure-activity information within this sequence have remained elusive. Here, we show that MIF(47-56) directly binds to CXCR2 to compete with MIF receptor activation. By using alanine scanning, essential and dispensable residues were identified. Moreover, MIF(cyclo10), a designed cyclized variant of MIF(47-56), inhibited key inflammatory and atherogenic MIF activities in vitro and in vivo/ex vivo, and exhibited strongly improved resistance to proteolytic degradation in human plasma in vitro, thus suggesting that it could serve as a promising basis for MIF-derived anti-atherosclerotic peptides.


Assuntos
Fatores Inibidores da Migração de Macrófagos/química , Peptídeos Cíclicos/metabolismo , Receptores de Interleucina-8B/metabolismo , Sequência de Aminoácidos , Animais , Adesão Celular , Fluoresceínas/química , Células HEK293 , Humanos , Leucócitos/química , Leucócitos/citologia , Leucócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos Cíclicos/sangue , Peptídeos Cíclicos/química , Ligação Proteica , Estabilidade Proteica , Receptores de Interleucina-8B/antagonistas & inibidores , Espectrometria de Fluorescência , Ácidos Sulfônicos/química
20.
Nat Commun ; 11(1): 5981, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33239628

RESUMO

Targeting a specific chemokine/receptor axis in atherosclerosis remains challenging. Soluble receptor-based strategies are not established for chemokine receptors due to their discontinuous architecture. Macrophage migration-inhibitory factor (MIF) is an atypical chemokine that promotes atherosclerosis through CXC-motif chemokine receptor-4 (CXCR4). However, CXCR4/CXCL12 interactions also mediate atheroprotection. Here, we show that constrained 31-residue-peptides ('msR4Ms') designed to mimic the CXCR4-binding site to MIF, selectively bind MIF with nanomolar affinity and block MIF/CXCR4 without affecting CXCL12/CXCR4. We identify msR4M-L1, which blocks MIF- but not CXCL12-elicited CXCR4 vascular cell activities. Its potency compares well with established MIF inhibitors, whereas msR4M-L1 does not interfere with cardioprotective MIF/CD74 signaling. In vivo-administered msR4M-L1 enriches in atherosclerotic plaques, blocks arterial leukocyte adhesion, and inhibits atherosclerosis and inflammation in hyperlipidemic Apoe-/- mice in vivo. Finally, msR4M-L1 binds to MIF in plaques from human carotid-endarterectomy specimens. Together, we establish an engineered GPCR-ectodomain-based mimicry principle that differentiates between disease-exacerbating and -protective pathways and chemokine-selectively interferes with atherosclerosis.


Assuntos
Aterosclerose/tratamento farmacológico , Oxirredutases Intramoleculares/antagonistas & inibidores , Fatores Inibidores da Migração de Macrófagos/antagonistas & inibidores , Fragmentos de Peptídeos/farmacologia , Receptores CXCR4/metabolismo , Idoso , Animais , Antígenos CD/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/cirurgia , Sítios de Ligação , Artéria Carótida Primitiva/patologia , Artéria Carótida Primitiva/cirurgia , Quimiocina CXCL12/metabolismo , Cristalografia por Raios X , Modelos Animais de Doenças , Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos , Endarterectomia das Carótidas , Feminino , Humanos , Oxirredutases Intramoleculares/metabolismo , Fatores Inibidores da Migração de Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Knockout para ApoE , Pessoa de Meia-Idade , Fragmentos de Peptídeos/uso terapêutico , Receptores CXCR4/química , Receptores CXCR4/ultraestrutura , Sialiltransferases/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...