Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Insects ; 14(10)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37887803

RESUMO

In this study, we tested the effects of mechanical leaf removal, insecticide application, and their interaction on leafhoppers and phytophagous and predatory mites occurring in two vineyards over three growing seasons. Leaf removal was performed in the fruit zone using a two-head pulsed air leaf remover, while insecticides were applied with a tunnel air-assisted sprayer at the maximum dose/ha recommended on the product label. Results demonstrated the efficacy of insecticide application in reducing the population densities of leafhoppers but also their detrimental effects on predatory mites. In a number of case studies, leaf removal reduced leafhopper and predatory mite densities. In one vineyard, phytophagous mite populations increased some weeks after leaf removal and insecticide application, highlighting the need to carefully consider the potential impact of vineyard management practices on non-target arthropods in the IPM framework.

2.
Plants (Basel) ; 12(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37836164

RESUMO

Dry yeast extracts (DYE) are applied to vineyards to improve aromatic and secondary metabolic compound content and wine quality; however, systematic information on the underpinning molecular mechanisms is lacking. This work aimed to unravel, through a systematic approach, the metabolic and molecular responses of Sauvignon Blanc berries to DYE treatments. To accomplish this, DYE spraying was performed in a commercial vineyard for two consecutive years. Berries were sampled at several time points after the treatment, and grapes were analyzed for sugars, acidity, free and bound aroma precursors, amino acids, and targeted and untargeted RNA-Seq transcriptional profiles. The results obtained indicated that the DYE treatment did not interfere with the technological ripening parameters of sugars and acidity. Some aroma precursors, including cys-3MH and GSH-3MH, responsible for the typical aromatic nuances of Sauvignon Blanc, were stimulated by the treatment during both vintages. The levels of amino acids and the global RNA-seq transcriptional profiles indicated that DYE spraying upregulated ROS homeostatic and thermotolerance genes, as well as ethylene and jasmonic acid biosynthetic genes, and activated abiotic and biotic stress responses. Overall, the data suggested that the DYE reduced berry oxidative stress through the regulation of specific subsets of metabolic and hormonal pathways.

3.
Chemosphere ; 344: 140380, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37813249

RESUMO

Climate change and pollution are increasingly important stress factors for life on Earth. Dispersal of poly- and perfluoroalkyl substances (PFAS) are causing worldwide contamination of soils and water tables. PFAS are partially hydrophobic and can easily bioaccumulate in living organisms, causing metabolic alterations. Different plant species can uptake large amounts of PFAS, but little is known about its consequences for the plant water relation and other physiological processes, especially in woody plants. In this study, we investigated the fractionation of PFAS bioaccumulation from roots to leaves and its effects on the conductive elements of willow plants. Additionally, we focused on the stomal opening and the phytohormonal content. For this purpose, willow cuttings were exposed to a mixture of 11 PFAS compounds and the uptake was evaluated by LC-MS/MS. Stomatal conductance was measured and the xylem vulnerability to air embolism was tested and further, the abscisic acid and salicylic acid contents were quantified using LC-MS/MS. PFAS accumulated from roots to leaves based on their chemical structure. PFAS-exposed plants showed reduced stomatal conductance, while no differences were observed in abscisic acid and salicylic acid contents. Interestingly, PFAS exposure caused a higher vulnerability to drought-induced xylem embolism in treated plants. Our study provides novel information about the PFAS effects on the xylem hydraulics, suggesting that the plant water balance may be affected by PFAS exposure. In this perspective, drought events may be more stressful for PFAS-exposed plants, thus reducing their potential for phytoremediation.


Assuntos
Fluorocarbonos , Salix , Ácido Abscísico/metabolismo , Salix/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Folhas de Planta/metabolismo , Água/metabolismo , Plantas/metabolismo , Xilema/metabolismo , Fluorocarbonos/toxicidade , Fluorocarbonos/metabolismo , Ácido Salicílico/metabolismo , Secas
4.
Sci Data ; 10(1): 587, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37679357

RESUMO

Simulating the carbon-water fluxes at more widely distributed meteorological stations based on the sparsely and unevenly distributed eddy covariance flux stations is needed to accurately understand the carbon-water cycle of terrestrial ecosystems. We established a new framework consisting of machine learning, determination coefficient (R2), Euclidean distance, and remote sensing (RS), to simulate the daily net ecosystem carbon dioxide exchange (NEE) and water flux (WF) of the Eurasian meteorological stations using a random forest model or/and RS. The daily NEE and WF datasets with RS-based information (NEE-RS and WF-RS) for 3774 and 4427 meteorological stations during 2002-2020 were produced, respectively. And the daily NEE and WF datasets without RS-based information (NEE-WRS and WF-WRS) for 4667 and 6763 meteorological stations during 1983-2018 were generated, respectively. For each meteorological station, the carbon-water fluxes meet accuracy requirements and have quasi-observational properties. These four carbon-water flux datasets have great potential to improve the assessments of the ecosystem carbon-water dynamics.

5.
Plants (Basel) ; 11(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36559686

RESUMO

Grapevine cultivation, such as the whole horticulture, is currently challenged by several factors, among which the extreme weather events occurring under the climate change scenario are the most relevant. Within this context, the present study aims at characterizing at the berry level the physiological response of Vitis vinifera cv. Sauvignon Blanc to sequential stresses simulated under a semi-controlled environment: flooding at bud-break followed by multiple summer stress (drought plus heatwave) occurring at pre-vèraison. Transcriptomic and metabolomic assessments were performed through RNASeq and NMR, respectively. A comprehensive hormone profiling was also carried out. Results pointed out a different response to the heatwave in the two situations. Flooding caused a developmental advance, determining a different physiological background in the berry, thus affecting its response to the summer stress at both transcriptional levels, with the upregulation of genes involved in oxidative stress responses, and metabolic level, with the increase in osmoprotectants, such as proline and other amino acids. In conclusion, sequential stress, including a flooding event at bud-break followed by a summer heatwave, may impact phenological development and berry ripening, with possible consequences on berry and wine quality. A berry physiological model is presented that may support the development of sustainable vineyard management solutions to improve the water use efficiency and adaptation capacity of actual viticultural systems to future scenarios.

6.
PLoS One ; 17(12): e0279759, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36584209

RESUMO

Inter-row vegetation in vineyards is classified as a service crop as it provides many ecosystem services. The vegetation is often removed but maintaining them can mitigate the negative effects on the environment. However, the type of species or mixture choice can affect their success. A field trial was conducted in an organically-managed vineyard of Cabernet sauvignon Vitis vinifera L. cultivars in north-eastern Italy, in which three blends of grass species (Shedonorus arundinaceus, Lolium perenne and Festuca rubra) and two grass-legume mixtures were grown in the inter-rows and compared with resident vegetation and regularly tilled bare soil. Each vegetation type, including resident vegetation, was subjected to mulching and non-mulching treatments. The aim of this study was to evaluate the use of seeded species or mixtures in the inter-row spaces of the vineyard in north-Italy as an alternative management to resident vegetation and tilled soil. The experiment was conducted over two years to monitor the persistence of the sown vegetation and the influence of vegetation types on vine performance and grape composition, and on soil compaction and erosion. The relative abundances of each species, vegetation height, percentage green cover and normalised difference vegetation index (NDVI), vine shoot length, number of leaves per vine shoot, leaf area, bunch weight, vine NDVI, soil compaction and erosion, and depth and width of tractor tyre prints were measured. Over time, weed invasion altered the botanical composition of all vegetation types except for the S. arundinaceus blend, which remained stable throughout the study period. Our results showed that vine parameters were not affected by the type of vegetation in the inter-rows, nor were there differences between the grassed and bare soil inter-rows. Soil compaction and erosion, and tractor tyre prints were not directly affected by the type of vegetation cover, but they were affected by tillage in the plots with bare soil in the inter-rows or where it was used to prepare the soil for sowing. Soil compaction and erosion were related to the percentage vegetation cover. Mulching did not affect any of the parameters measured. Therefore, species selection plays a crucial role in inter-row vegetation management and in minimising environmental impacts. S. arundinaceus gave high protection against soil erosion due to its high persistence throughout the year and had the lowest growth rate thus requiring fewer cuttings.


Assuntos
Ecossistema , Vitis , Fazendas , Agricultura/métodos , Solo , Poaceae , Plantas
7.
Front Plant Sci ; 10: 339, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30972087

RESUMO

Studies on model plants have shown that temporary soil flooding exposes roots to a significant hypoxic stress resulting in metabolic re-programming, accumulation of toxic metabolites and hormonal imbalance. To date, physiological and transcriptional responses to flooding in grapevine are poorly characterized. To fill this gap, we aimed to gain insights into the transcriptional and metabolic changes induced by flooding on grapevine roots (K5BB rootstocks), on which cv Sauvignon blanc (Vitis vinifera L.) plants were grafted. A preliminary experiment under hydroponic conditions enabled the identification of transiently and steadily regulated hypoxia-responsive marker genes and drafting a model for response to oxygen deprivation in grapevine roots. Afterward, over two consecutive vegetative seasons, flooding was imposed to potted vines during the late dormancy period, to mimick the most frequent waterlogging events occurring in the field. Untargeted transcriptomic and metabolic profiling approaches were applied to investigate early responses of grapevine roots during exposure to hypoxia and subsequent recovery after stress removal. The initial hypoxic response was marked by a significant increase of the hypoxia-inducible metabolites ethanol, GABA, succinic acid and alanine which remained high also 1 week after recovery from flooding with the exception of ethanol that leveled off. Transcriptomic data supported the metabolic changes by indicating a substantial rearrangement of primary metabolic pathways through enhancement of the glycolytic and fermentative enzymes and of a subset of enzymes involved in the TCA cycle. GO and KEGG pathway analyses of differentially expressed genes showed a general down-regulation of brassinosteroid, auxin and gibberellin biosynthesis in waterlogged plants, suggesting a general inhibition of root growth and lateral expansion. During recovery, transcriptional activation of gibberellin biosynthetic genes and down-regulation of the metabolic ones may support a role for gibberellins in signaling grapevine rootstocks waterlogging metabolic and hormonal changes to the above ground plant. The significant internode elongation measured upon budbreak during recovery in plants that had experienced flooding supported this hypothesis. Overall integration of these data enabled us to draft a first comprehensive view of the molecular and metabolic pathways involved in grapevine's root responses highlighting a deep metabolic and transcriptomic reprogramming during and after exposure to waterlogging.

8.
Front Plant Sci ; 7: 69, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26904046

RESUMO

In modern viticulture, grafting commercial grapevine varieties on interspecific rootstocks is a common practice required for conferring resistance to many biotic and abiotic stresses. Nevertheless, the use of rootstocks to gain these essential traits is also known to impact grape berry development and quality, although the underlying mechanisms are still poorly understood. In grape berries, the onset of ripening (véraison) is regulated by a complex network of mobile signals including hormones such as auxins, ethylene, abscisic acid, and brassinosteroids. Recently, a new rootstock, designated M4, was selected based on its enhanced tolerance to water stress and medium vigor. This study investigates the effect of M4 on Cabernet Sauvignon (CS) berry development in comparison to the commercial 1103P rootstock. Physical and biochemical parameters showed that the ripening rate of CS berries is faster when grafted onto M4. A multifactorial analysis performed on mRNA-Seq data obtained from skin and pulp of berries grown in both graft combinations revealed that genes controlling auxin action (ARF and Aux/IAA) represent one of main categories affected by the rootstock genotype. Considering that the level of auxin tightly regulates the transcription of these genes, we investigated the behavior of the main gene families involved in auxin biosynthesis and conjugation. Molecular and biochemical analyses confirmed a link between the rate of berry development and the modulation of auxin metabolism. Moreover, the data indicate that this phenomenon appears to be particularly pronounced in skin tissue in comparison to the flesh.

9.
Front Plant Sci ; 6: 314, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26029220

RESUMO

Drought and salinity stresses will have a high impact on future crop productivity, due to climate change and the increased competition for land, water, and energy. The response to drought (WS), salinity (SS), and the combined stresses (WS+SS) was monitored in two maize lines: the inbred B73 and an F1 commercial stress-tolerant hybrid. A protocol mimicking field progressive stress conditions was developed and its effect on plant growth analyzed at different time points. The results indicated that the stresses limited growth in the hybrid and arrested it in the inbred line. In SS, the two genotypes had different ion accumulation and translocation capacity, particularly for Na(+) and Cl(-). Moreover, the hybrid perceived the stress, reduced all the analyzed physiological parameters, and kept them reduced until the recovery. B73 decreased all physiological parameters more gradually, being affected mainly by SS. Both lines recovered better from WS than the other stresses. Molecular analysis revealed a diverse modulation of some stress markers in the two genotypes, reflecting their different response to stresses. Combining biochemical and physiological data with expression analyses yielded insight into the mechanisms regulating the different stress tolerance of the two lines.

10.
J Exp Bot ; 66(19): 5739-52, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26038306

RESUMO

In light of ongoing climate changes in wine-growing regions, the selection of drought-tolerant rootstocks is becoming a crucial factor for developing a sustainable viticulture. In this study, M4, a new rootstock genotype that shows tolerance to drought, was compared from a genomic and transcriptomic point of view with the less drought-tolerant genotype 101.14. The root and leaf transcriptome of both 101.14 and the M4 rootstock genotype was analysed, following exposure to progressive drought conditions. Multifactorial analyses indicated that stress treatment represents the main factor driving differential gene expression in roots, whereas in leaves the genotype is the prominent factor. Upon stress, M4 roots and leaves showed a higher induction of resveratrol and flavonoid biosynthetic genes, respectively. The higher expression of VvSTS genes in M4, confirmed by the accumulation of higher levels of resveratrol in M4 roots compared with 101.14, was coupled to an up-regulation of several VvWRKY transcription factors. Interestingly, VvSTS promoter analyses performed on both the resequenced genomes highlighted a significantly higher number of W-BOX elements in the tolerant genotype. It is proposed that the elevated synthesis of resveratrol in M4 roots upon water stress could enhance the plant's ability to cope with the oxidative stress usually associated with water deficit.


Assuntos
Secas , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Proteínas de Plantas/genética , Transcriptoma , Vitis/fisiologia , Mudança Climática , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Estresse Fisiológico , Vitis/genética
11.
Environ Sci Pollut Res Int ; 22(17): 13362-71, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25940473

RESUMO

Soil contamination by antibiotics is a possible consequence of animal husbandry waste, sewage sludge, and reclaimed water spreading in agriculture. In this study, 1-year-old hazel plants (Corylus avellana L.) were grown in pots for 64 days in soil spiked with sulfadiazine (SDZ) in the range 0.01-100 mg kg(-1) soil. Leaf gas exchanges, fluorescence parameters and plant growth were measured regularly during the experiment, whereas plant biomass, sulfonamide concentrations in soil and plant tissues, and the quantitative variation of culturable bacterial endophytes in leaf petiole were analyzed at the end of the trial. During the experiment, photosynthesis and leaf transpiration as well as fluorescence parameters were progressively reduced by the antibiotic. Effects were more evident for leaf transpiration and for the highest SDZ spiking concentrations, whereas growth analyses did not reveal negative effects of the antibiotic. At the end of the trial, a high number of culturable endophytic bacteria in the leaf petiole of plants treated with 0.1 and 0.01 mg kg(-1) were observed, and SDZ was extractable from soil and plant roots for spiking concentrations ≥1 mg kg(-1). Inside plants, the antibiotic was mainly stored at the root level with bioconcentration factors increasing with the spiking dose, and the hydroxylated derivate 4-OH-SDZ was the only metabolite detected. Overall results show that 1-year-old hazel plants can contribute to the reduction of sulfonamide concentrations in the environment, however, sensitive reactions to SDZ can be expected at the highest contamination levels.


Assuntos
Antibacterianos/metabolismo , Corylus/metabolismo , Poluentes do Solo/metabolismo , Sulfadiazina/metabolismo , Animais , Antibacterianos/farmacologia , Corylus/efeitos dos fármacos , Corylus/crescimento & desenvolvimento , Corylus/microbiologia , Endófitos/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Esgotos/química , Solo/química , Poluentes do Solo/farmacologia , Sulfadiazina/farmacologia , Drogas Veterinárias/metabolismo , Drogas Veterinárias/farmacologia
12.
Int J Phytoremediation ; 14(4): 388-402, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22567719

RESUMO

The application of manure to fertilize arable lands is one of the major means through which veterinary sulfonamides (SAs) enter the environment. Little is known about the capacity of woody plants to phytoremediate this class of antibiotics. To this purpose we performed preliminary studies to evaluate Salix fragilis L. response to sulfadimethoxine (SDM) by investigating both its ability to absorb and tolerate doses of SDM found in fresh faeces of treated calves. Forty cuttings were exposed to either 0, 0.5, 1, or 2 mM of SDM for one month. Decreases in photosynthetic electron transport rate and net CO2 assimilation after 25 days for the higher SDM concentrations were noticed. Moreover, alterations in root morphology of treated plants were observed and further investigated through electron microscopy. However, collected data revealed high root accumulation potential. These preliminary results are promising as they demonstrate that Salix fragilis L. can both absorb and tolerate high concentrations of SAs.


Assuntos
Anti-Infecciosos/metabolismo , Salix/metabolismo , Poluentes do Solo/metabolismo , Sulfadimetoxina/metabolismo , Animais , Anti-Infecciosos/toxicidade , Biodegradação Ambiental , Biomassa , Dióxido de Carbono/metabolismo , Bovinos , Clorofila/metabolismo , Fezes , Fluorescência , Esterco , Fotossíntese , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Caules de Planta/efeitos dos fármacos , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Transpiração Vegetal , Salix/anatomia & histologia , Salix/efeitos dos fármacos , Salix/crescimento & desenvolvimento , Poluentes do Solo/toxicidade , Sulfadimetoxina/toxicidade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...