Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 12320, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30120350

RESUMO

Abscisic acid (ABA) is a phytohormone that is necessary for stress adaptation. Recent studies have reported that attenuated levels of ABA improved grain yield and seedling growth under low temperature in cereals. To improve plant growth under low temperature, we attempted to generate ABA-insensitive transgenic rice by expressing a clade A type 2C protein phosphatase (OsPP2C), OsABIL2, with or without the mutation equivalent to the Arabidopsis abi1-1 mutation. A yeast two-hybrid assay revealed that the interaction between OsABIL2 and a putative rice ABA receptor, OsPYL1, was ABA-dependent, and the interaction was lost with amino acid substitution from glycine to aspartic acid at the 183rd amino acid of the OsABIL2 protein, corresponding to abi1-1 mutation. The constitutive expression of OsABIL2 or OsABIL2G183D in Arabidopsis or rice decreased ABA sensitivity to differing degrees. Moreover, the transgenic rice expressing OsABIL2G183D exhibited improved seedling growth under low temperature, although the transgenic lines showed unfavorable traits, such as viviparous germination and elongated internodes. These results indicated that the introduction of abi1-1 type dominant mutation was also effective in OsABIL2 at decreasing ABA sensitivity in plants, and the attenuation of ABA sensitivity could be an alternative parameter to improve rice performance under low temperatures.


Assuntos
Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Oryza/efeitos dos fármacos , Oryza/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Mutação , Oryza/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Técnicas do Sistema de Duplo-Híbrido
2.
J Plant Physiol ; 191: 54-62, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26717012

RESUMO

In northern regions, winter wheat (Triticum aestivum L.) accumulates fructan during cold-acclimation in autumn and freeze-acclimation in early winter. The content of fructan in wheat crown tissues is associated with both freezing tolerance and snow mold resistance, and expression levels of fructan synthesis genes in leaf and crown tissue are correlated with both changes and varietal differences in fructan accumulation levels of wheat during cold- and freeze-acclimation. Fructan hydrolysis activity has also been thought be involved in wintering ability of wheat. Since several kinds of gene homologs encoding fructan exohydrolase (FEH: EC. 3.2.1.153, 154) with different substrate specificities have recently been cloned from wheat, changes in transcript levels of wheat FEH genes in field-grown wheat cultivars from autumn to spring were analyzed to investigate regulation of seasonal changes in fructan content. The seasonal expression patterns of five genes encoding 1-FEH, 6-FEH (and Wfh-sm3), 6&1-FEH and 6-KEH (kestose exohydrolase) varied. Among the five genes, only seasonal changes in the expression of wfh-sm3, which codes an enzyme that is able to hydrolyze almost all components of fructan that has accumulated in hardened wheat tissues, were correlated with those changes in fructan contents. Moreover, the transcript levels of wfh-sm3 were low in snow mold-resistant cultivars that accumulate high levels of fructan. The transcript levels of 6-FEH increased with decrease in ambient temperatures and the levels decreased under snow. The analysis indicated that cooperative expression of 6-FEH and 1-FEH genes might be related to the seasonal changes and varietal difference in mono- and disaccharide contents. This study showed that the coordinated expression of FEH genes in wheat was related to the regulation of water-soluble carbohydrate accumulation from autumn to early winter and fructan consumption under snow cover as well as energy supply and that wheat FEHs also play an important role in the varietal difference in freezing tolerance and snow mold resistance. In particular, the expression of wfh-sm3 may regulate fructan metabolism associated with tolerance for wintering stresses.


Assuntos
Frutanos/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Glicosídeo Hidrolases/genética , Proteínas de Plantas/genética , Estações do Ano , Triticum/enzimologia , Triticum/genética , Carboidratos/análise , Regulação Enzimológica da Expressão Gênica , Glicosídeo Hidrolases/metabolismo , Proteínas de Plantas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Neve , Solubilidade , Temperatura
3.
Sci Rep ; 5: 13819, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26350634

RESUMO

Stress-induced abscisic acid (ABA) is mainly catabolized by ABA 8'-hydroxylase (ABA8ox), which also strictly regulates endogenous ABA levels. Although three members of the ABA8ox gene family are conserved in rice, it is not clear which stressors induce expression of these genes. Here, we found that OsABA8ox1 was induced by cold stress within 24 h and that OsABA8ox2 and OsABA8ox3 were not. In contrast, OsABA8ox2 and OsABA8ox3 were ABA-inducible, but OsABA8ox1 was not. OsABA8ox1, OsABA8ox2, and OsABA8ox3 restored germination of a cyp707a1/a2/a3 triple mutant of Arabidopsis to rates comparable to those of the wild type, indicating that OsABA8ox1, OsABA8ox2, and OsABA8ox3 function as ABA-catabolic genes in vivo. Transgenic rice lines overexpressing OsABA8ox1 showed decreased levels of ABA and increased seedling vigor at 15 °C. These results indicate that sustained low levels of ABA lead to increased seedling vigor during cold stress. On the other hand, excessively low endogenous ABA levels caused reduced drought and cold tolerance, although some of the transgenic rice lines expressing OsABA8ox1 at moderate levels did not show these harmful effects. Adequate regulation of endogenous ABA levels is thought to be crucial for maintaining seedling vigor under cold stress and for cold and drought tolerance in rice.


Assuntos
Ácido Abscísico/metabolismo , Temperatura Baixa , Oryza/fisiologia , Plântula , Estresse Fisiológico , Análise por Conglomerados , Secas , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Teste de Complementação Genética , Mutação , Oryza/efeitos dos fármacos , Fenótipo , Reguladores de Crescimento de Plantas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...