Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Futur ; 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39066977

RESUMO

Changes resulting from different tillage practices can affect the structure of microbial communities, thereby altering soil ecosystems and their functioning. The aim of this study was to explore and compare the physical, chemical properties and bacterial community composition of soils from different land use types (forest, grassland, vineyard, and arable field) in a small catchment. 16S rRNA gene-based amplicon sequencing was used to reveal the taxonomic diversity of summer and autumn soil samples taken from two different slope positions. The greater the anthropogenic impact was on the type of land use, the greater the change was in soil physical and chemical parameters. All sample types were dominated by the phyla Pseudomonadota, Acidobacteriota, Actinobacteriota, Bacteroidota and Verrucomicrobiota. Differences in the relative abundance of various bacterial taxa reflected the different land use types, the seasonality, and the topography. These diversity changes were consistent with the differences in soil properties.

2.
Biol Futur ; 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39073547

RESUMO

The common grape (Vitis vinifera L.) has been cultivated for thousands of years. Nowadays, it is cultivated using a variety of tillage practices that affect the structure of the soil microbial communities and thus the health of the vine. The aim of this study was to explore and compare the effects of tillage (shallow tillage with bare soil) and no-tillage (perennial grass cover) practices on soil physical and chemical properties and soil bacterial community diversities in a small catchment. Soil samples were taken in July and October 2020 at different slope positions of two vineyards exposed to erosion. The two sampling sites were separated by the agricultural inter-row management type: tilled and no-tilled slopes. The taxonomic diversity of bacterial communities was determined using 16S rRNA gene-based amplicon sequencing method on Illumina MiSeq platform. Based on the examined soil properties, the sampling areas were separated from each other according to the positions of the upper and lower slopes and the sampling times. Both the tilled and no-tilled soil samples were dominated by sequences assigned to phyla Pseudomonadota, Acidobacteriota, Bacteroidota, Verrucomicrobiota, Actinobacteriota, and Gemmatimonadota. The results showed that tillage had no significant effect compared to the no-tilled samples in the studied area. Water runoff and seasonally changed soil physical and chemical properties affected mainly the bacterial community structures.

3.
Biol Futur ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990490

RESUMO

Earth harbors unique environments where only microorganisms adapted to extreme conditions, known as extremophiles, can survive. This study focused on a high-altitude meltwater pond, located in the Puna de Atacama, Dry Andes. The extremophilic bacteria of this habitat must adapt to a range of extremities, including cold and dry climate, high UV radiation, high daily temperature fluctuations, low-nutrient availability, and negative water balance. This study aimed to explore the taxonomic diversity of cultivable extremophilic bacteria from sediment samples of a desiccated, high-altitude, meltwater pond using media with different organic matter contents and different incubation temperatures. Based on the 16S rRNA gene sequence analysis, the isolates were identified as members of the phyla Actinobacteria, Proteobacteria, and Firmicutes. The most abundant genera were Arthrobacter and Pseudoarthrobacter. The isolates had oligocarbophilic and psychrotrophic properties, suggesting that they have adapted to the extreme environmental parameters of their natural habitats. The results indicate a positive correlation between nutrient concentration and temperature tolerance.

4.
Microorganisms ; 12(6)2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38930544

RESUMO

Soil bacterial communities play a remarkable role in nutrient cycling, significantly affecting soil organic material content, soil fertility, and, in an indirect way, plant succession processes. Conversely, vegetation type influences microbial soil life. The present study compared the bacterial microbiome composition, diversity and catabolic activity profile of topsoil samples collected under three different forest types (a twice-coppiced black locust stand, a young, naturally reforested, and a middle-aged mixed pedunculate oak stand) planted on former arable land in the early 20th century. Diversity indices determined during 16S ribosomal RNA sequencing-based metagenome analysis indicated that the black locust stand had the highest soil bacterial community diversity. At the phylum level, Acidobacteriota, Actinobacteriota, Proteobacteria, Verrucomicrobiota, Bacteroidota, and Gemmatimonadota were the most abundant taxa in the forest soils. Concerning soil parameters, redundancy analysis revealed that pH had the highest impact on bacterial community structure and pH, and soil organic carbon content on the samples' respiration patterns. As for catabolic activity, the recently clearcut oak forest showed the lowest substrate-induced respiration, and citrate was the main driver for the inter-stand variability of microbial activity. Our results confirm that soil parameters and forest type influence the composition and functioning of the soil bacterial microbiome.

5.
Sci Rep ; 14(1): 7460, 2024 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-38553497

RESUMO

Soil salinity and sodicity is a worldwide problem that affects the composition and activity of bacterial communities and results from elevated salt and sodium contents. Depending on the degree of environmental pressure and the combined effect of other factors, haloalkalitolerant and haloalkaliphilic bacterial communities will be selected. These bacteria play a potential role in the maintenance and restoration of salt-affected soils; however, until recently, only a limited number of studies have simultaneously studied the bacterial diversity and activity of saline-sodic soils. Soil samples were collected to analyse and compare the taxonomic composition and metabolic activity of bacteria from four distinct natural plant communities at three soil depths corresponding to a salinity‒sodicity gradient. Bacterial diversity was detected using 16S rRNA gene Illumina MiSeq amplicon sequencing. Community-level physiological profiles (CLPPs) were analysed using the MicroResp™ method. The genus-level bacterial composition and CLPPs differed significantly in soils with different alkaline vegetation. The surface soil samples also significantly differed from the intermediate and deep soil samples. The results showed that the pH, salt content, and Na+ content of the soils were the main edaphic factors influencing both bacterial diversity and activity. With salinity and pH, the proportion of the phylum Gemmatimonadota increased, while the proportions of Actinobacteriota and Acidobacteriota decreased.


Assuntos
Salinidade , Solo , Solo/química , RNA Ribossômico 16S/genética , Microbiologia do Solo , Bactérias/genética
6.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36499372

RESUMO

Streptomyces are of great interest in the pharmaceutical industry as they produce a plethora of secondary metabolites that act as antibacterial and antifungal agents. They may thrive on their own in the soil, or associate with other organisms, such as plants or invertebrates. Some soil-derived strains exhibit hemolytic properties when cultivated on blood agar, raising the question of whether hemolysis could be a virulence factor of the bacteria. In this work we examined hemolytic compound production in 23 ß-hemolytic Streptomyces isolates; of these 12 were soil-derived, 10 were arthropod-associated, and 1 was plant-associated. An additional human-associated S. sp. TR1341 served as a control. Mass spectrometry analysis suggested synthesis of polyene molecules responsible for the hemolysis: candicidins, filipins, strevertene A, tetrafungin, and tetrin A, as well as four novel polyene compounds (denoted here as polyene A, B, C, and D) in individual liquid cultures or paired co-cultures. The non-polyene antifungal compounds actiphenol and surugamide A were also identified. The findings indicate that the ability of Streptomyces to produce cytolytic compounds (here manifested by hemolysis on blood agar) is an intrinsic feature of the bacteria in the soil environment and could even serve as a virulence factor when colonizing available host organisms. Additionally, a literature review of polyenes and non-polyene hemolytic metabolites produced by Streptomyces is presented.


Assuntos
Streptomyces , Humanos , Streptomyces/química , Antifúngicos/farmacologia , Antifúngicos/química , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Polienos/farmacologia , Polienos/química , Hemólise , Fatores de Virulência/metabolismo
7.
Astrobiology ; 20(6): 754-765, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32525738

RESUMO

Microbial ecology of permafrost, due to its ecological and astrobiological importance, has been in the focus of studies in past decades. Although permafrost is an ancient and stable environment, it is also subjected to current climate changes. Permafrost degradation often results in generation of thaw ponds, a phenomenon not only reported mainly from polar regions but also present in high-altitude permafrost environments. Our knowledge about microbial communities of thaw ponds in these unique, remote mountain habitats is sparse. This study presents the first culture collection and results of the next-generation DNA sequencing (NGS) analysis of bacterial communities inhabiting a high-altitude permafrost thaw pond. In February 2016, a permafrost thaw pond on the Ojos del Salado at 5900 m a.s.l. (meters above sea level) was sampled as part of the Hungarian Dry Andes Research Programme. A culture collection of 125 isolates was established, containing altogether 11 genera belonging to phyla Bacteroidetes, Actinobacteria, and Proteobacteria. Simplified bacterial communities with a high proportion of candidate and hitherto uncultured bacteria were revealed by Illumina MiSeq NGS. Water of the thaw pond was dominated by Bacteroidetes and Proteobacteria, while in the sediment of the lake and permafrost, members of Acidobacteria, Actinobacteria, Bacteroidetes, Patescibacteria, Proteobacteria, and Verrucomicrobia were abundant. This permafrost habitat can be interesting as a potential Mars analog.


Assuntos
Altitude , Bactérias/genética , Variação Genética , Pergelissolo/microbiologia , Lagoas/microbiologia , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Contagem de Colônia Microbiana , Sedimentos Geológicos/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Análise de Componente Principal , América do Sul , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA