Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Virol ; 98(5): e0020724, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38639487

RESUMO

To streamline standard virological assays, we developed a suite of nine fluorescent or bioluminescent replication competent human species C5 adenovirus reporter viruses that mimic their parental wild-type counterpart. These reporter viruses provide a rapid and quantitative readout of various aspects of viral infection and replication based on EGFP, mCherry, or NanoLuc measurement. Moreover, they permit real-time non-invasive measures of viral load, replication dynamics, and infection kinetics over the entire course of infection, allowing measurements that were not previously possible. This suite of replication competent reporter viruses increases the ease, speed, and adaptability of standard assays and has the potential to accelerate multiple areas of human adenovirus research.IMPORTANCEIn this work, we developed a versatile toolbox of nine HAdV-C5 reporter viruses and validated their functions in cell culture. These reporter viruses provide a rapid and quantitative readout of various aspects of viral infection and replication based on EGFP, mCherry, or NanoLuc measurement. The utility of these reporter viruses could also be extended for use in 3D cell culture, organoids, live cell imaging, or animal models, and provides a conceptual framework for the development of new reporter viruses representing other clinically relevant HAdV species.


Assuntos
Adenovírus Humanos , Genes Reporter , Replicação Viral , Humanos , Adenovírus Humanos/genética , Adenovírus Humanos/fisiologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Carga Viral , Células HEK293 , Infecções por Adenovirus Humanos/virologia , Linhagem Celular
2.
Nucleic Acids Res ; 52(6): 3199-3212, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38407436

RESUMO

Productive infections by RNA viruses require faithful replication of the entire genome. Yet many RNA viruses also produce deletion-containing viral genomes (DelVGs), aberrant replication products with large internal deletions. DelVGs interfere with the replication of wild-type virus and their presence in patients is associated with better clinical outcomes. The DelVG RNA itself is hypothesized to confer this interfering activity. DelVGs antagonize replication by out-competing the full-length genome and triggering innate immune responses. Here, we identify an additionally inhibitory mechanism mediated by a new class of viral proteins encoded by DelVGs. We identified hundreds of cryptic viral proteins translated from DelVGs. These DelVG-encoded proteins (DPRs) include canonical viral proteins with large internal deletions, as well as proteins with novel C-termini translated from alternative reading frames. Many DPRs retain functional domains shared with their full-length counterparts, suggesting they may have activity during infection. Mechanistic studies of DPRs derived from the influenza virus protein PB2 showed that they poison replication of wild-type virus by acting as dominant-negative inhibitors of the viral polymerase. These findings reveal that DelVGs have a dual inhibitory mechanism, acting at both the RNA and protein level. They further show that DPRs have the potential to dramatically expand the functional proteomes of diverse RNA viruses.


Assuntos
Genoma Viral , Vírus da Influenza A , Proteoma , Proteínas Virais , Humanos , Genoma Viral/genética , Vírus da Influenza A/genética , Proteoma/genética , RNA Viral/genética , RNA Viral/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/genética , Deleção de Sequência/genética , Animais , Cães , Linhagem Celular
4.
J Virol ; 98(1): e0179123, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38168672

RESUMO

In the United States (US), biosafety and biosecurity oversight of research on viruses is being reappraised. Safety in virology research is paramount and oversight frameworks should be reviewed periodically. Changes should be made with care, however, to avoid impeding science that is essential for rapidly reducing and responding to pandemic threats as well as addressing more common challenges caused by infectious diseases. Decades of research uniquely positioned the US to be able to respond to the COVID-19 crisis with astounding speed, delivering life-saving vaccines within a year of identifying the virus. We should embolden and empower this strength, which is a vital part of protecting the health, economy, and security of US citizens. Herein, we offer our perspectives on priorities for revised rules governing virology research in the US.


Assuntos
Pesquisa Biomédica , Contenção de Riscos Biológicos , Virologia , Humanos , COVID-19 , Estados Unidos , Vírus , Pesquisa Biomédica/normas
5.
bioRxiv ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38168266

RESUMO

Productive infections by RNA viruses require faithful replication of the entire genome. Yet many RNA viruses also produce deletion-containing viral genomes (DelVGs), aberrant replication products with large internal deletions. DelVGs interfere with the replication of wild-type virus and their presence in patients is associated with better clinical outcomes as they. The DelVG RNA itself is hypothesized to confer this interfering activity. DelVGs antagonize replication by out-competing the full-length genome and triggering innate immune responses. Here, we identify an additionally inhibitory mechanism mediated by a new class of viral proteins encoded by DelVGs. We identified hundreds of cryptic viral proteins translated from DelVGs. These DelVG-encoded proteins (DPRs) include canonical viral proteins with large internal deletions, as well as proteins with novel C-termini translated from alternative reading frames. Many DPRs retain functional domains shared with their full-length counterparts, suggesting they may have activity during infection. Mechanistic studies of DPRs derived from the influenza virus protein PB2 showed that they poison replication of wild-type virus by acting as dominant-negative inhibitors of the viral polymerase. These findings reveal that DelVGs have a dual inhibitory mechanism, acting at both the RNA and protein level. They further show that DPRs have the potential to dramatically expand the functional proteomes of diverse RNA viruses.

6.
Cell Host Microbe ; 31(9): 1552-1567.e8, 2023 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-37652009

RESUMO

Host:pathogen interactions dictate the outcome of infection, yet the limitations of current approaches leave large regions of this interface unexplored. Here, we develop a novel fitness-based screen that queries factors important during the middle to late stages of infection. This is achieved by engineering influenza virus to direct the screen by programming dCas9 to modulate host gene expression. Our genome-wide screen for pro-viral factors identifies the cytoplasmic DNA exonuclease TREX1. TREX1 degrades cytoplasmic DNA to prevent inappropriate innate immune activation by self-DNA. We reveal that this same process aids influenza virus replication. Infection triggers release of mitochondrial DNA into the cytoplasm, activating antiviral signaling via cGAS and STING. TREX1 metabolizes the DNA, preventing its sensing. Collectively, these data show that self-DNA is deployed to amplify innate immunity, a process tempered by TREX1. Moreover, they demonstrate the power and generality of pathogen-driven fitness-based screens to pinpoint key host regulators of infection.


Assuntos
Doenças Transmissíveis , Influenza Humana , Infecções por Orthomyxoviridae , Orthomyxoviridae , Humanos , Influenza Humana/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , DNA , Exodesoxirribonucleases/genética
7.
Curr Protoc ; 3(3): e702, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36939277

RESUMO

Proteins frequently function in high-order complexes. Defining protein-protein interactions is essential to acquiring a full understanding of their activity and regulation. Proximity biotinylation has emerged as a highly specific approach to capture transient and stable interactions in living cells or organisms. Proximity biotinylation exploits promiscuous biotinylating enzymes fused to a bait protein, resulting in the biotinylation of adjacent endogenous proteins. Biotinylated interactors are purified under very strict conditions and identified by mass spectrometry to obtain a high-confidence list of candidate binding partners. AirID is a recently described biotin ligase specifically engineered for proximity labeling. This protocol details proximity biotinylation by AirID, using protein complexes that form during a type I interferon response as an example. It covers the construction and validation of AirID fusion proteins and the enrichment and identification of biotinylated interactors. We describe a variation on the protocol using splitAirID. In this case, AirID is split into two inactive fragments and ligase activity is only restored upon dimerization of the bait proteins. This permits selective detection of proteins that interact with homo- or heterodimeric forms of the bait. The protocol considers design strategies, optimization, and the properties of different biotin ligases to identify optimal conditions for each experimental question. We also discuss common pitfalls and how to troubleshoot them. These approaches allow proximity biotinylation to be a powerful tool for defining protein interactomes. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Construction and functional validation of AirID fusion proteins Alternate Protocol: Construction and functional validation of splitAirID fusion proteins Support Protocol: Western blot for biotinylated proteins Basic Protocol 2: Biotinylation, enrichment, and identification of protein interactors.


Assuntos
Biotina , Proteínas , Biotina/química , Biotinilação , Proteínas/química , Western Blotting , Ligases
8.
bioRxiv ; 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36798235

RESUMO

Intracellular pathogens interact with host factors, exploiting those that enhance replication while countering those that suppress it. Genetic screens have begun to define the host:pathogen interface and establish a mechanistic basis for host-directed therapies. Yet, limitations of current approaches leave large regions of this interface unexplored. To uncover host factors with pro-pathogen functions, we developed a novel fitness-based screen that queries factors important during the middle-to-late stages of infection. This was achieved by engineering influenza virus to direct the screen by programing dCas9 to modulate host gene expression. A genome-wide screen identified the cytoplasmic DNA exonuclease TREX1 as a potent pro-viral factor. TREX1 normally degrades cytoplasmic DNA to prevent inappropriate innate immune activation by self DNA. Our mechanistic studies revealed that this same process functions during influenza virus infection to enhance replication. Infection triggered release of mitochondrial DNA into the cytoplasm, activating antiviral signaling via cGAS and STING. TREX1 metabolized the mitochondrial DNA preventing its sensing. Collectively, these data show that self-DNA is deployed to amplify host innate sensing during RNA virus infection, a process tempered by TREX1. Moreover, they demonstrate the power and generality of pathogen driven fitness-based screens to pinpoint key host regulators of intracellular pathogens.

9.
PLoS Biol ; 20(12): e3001934, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36542656

RESUMO

Viruses must balance their reliance on host cell machinery for replication while avoiding host defense. Influenza A viruses are zoonotic agents that frequently switch hosts, causing localized outbreaks with the potential for larger pandemics. The host range of influenza virus is limited by the need for successful interactions between the virus and cellular partners. Here we used immunocompetitive capture-mass spectrometry to identify cellular proteins that interact with human- and avian-style viral polymerases. We focused on the proviral activity of heterogenous nuclear ribonuclear protein U-like 1 (hnRNP UL1) and the antiviral activity of mitochondrial enoyl CoA-reductase (MECR). MECR is localized to mitochondria where it functions in mitochondrial fatty acid synthesis (mtFAS). While a small fraction of the polymerase subunit PB2 localizes to the mitochondria, PB2 did not interact with full-length MECR. By contrast, a minor splice variant produces cytoplasmic MECR (cMECR). Ectopic expression of cMECR shows that it binds the viral polymerase and suppresses viral replication by blocking assembly of viral ribonucleoprotein complexes (RNPs). MECR ablation through genome editing or drug treatment is detrimental for cell health, creating a generic block to virus replication. Using the yeast homolog Etr1 to supply the metabolic functions of MECR in MECR-null cells, we showed that specific antiviral activity is independent of mtFAS and is reconstituted by expressing cMECR. Thus, we propose a strategy where alternative splicing produces a cryptic antiviral protein that is embedded within a key metabolic enzyme.


Assuntos
Ácidos Graxos Dessaturases , Vírus da Influenza A , Humanos , Ácidos Graxos Dessaturases/metabolismo , Processamento Alternativo/genética , Mitocôndrias/metabolismo , Vírus da Influenza A/genética , Isoformas de Proteínas/metabolismo , Replicação Viral
10.
Curr Opin Virol ; 56: 101271, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36242894

RESUMO

Under constant barrage by viruses, hosts have evolved a plethora of antiviral effectors and defense mechanisms. To survive, viruses must adapt to evade or subvert these defenses while still capturing cellular resources to fuel their replication cycles. Large-scale studies of the antiviral activities of cellular proteins and processes have shown that different viruses are controlled by distinct subsets of antiviral genes. The remaining antiviral genes are either ineffective in controlling infection, or in some cases, actually promote infection. In these cases, classically defined antiviral factors are retasked by viruses to enhance viral replication. This creates a more nuanced picture revealing the contextual nature of antiviral activity. The same protein can exert different effects on replication, depending on multiple factors, including the host, the target cells, and the specific virus infecting it. Here, we review numerous examples of viruses hijacking canonically antiviral proteins and retasking them for proviral purposes.

11.
J Virol ; 96(18): e0130522, 2022 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-36094313

RESUMO

Curriculum guidelines for virology are needed to best guide student learning due to the continuous and ever-increasing volume of virology information, the need to ensure that undergraduate and graduate students have a foundational understanding of key virology concepts, and the importance in being able to communicate that understanding to both other virologists and nonvirologists. Such guidelines, developed by virology educators and the American Society for Virology Education and Career Development Committee, are described herein.


Assuntos
Currículo , Universidades , Virologia , Educação de Pós-Graduação , Estados Unidos , Virologia/educação
12.
Nat Commun ; 13(1): 3416, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35701424

RESUMO

Transmission of influenza A viruses (IAV) between hosts is subject to numerous physical and biological barriers that impose genetic bottlenecks, constraining viral diversity and adaptation. The bottlenecks within hosts and their potential impacts on evolutionary pathways taken during infection are poorly understood. To address this, we created highly diverse IAV libraries bearing molecular barcodes on two gene segments, enabling high-resolution tracking and quantification of unique virus lineages within hosts. Here we show that IAV infection in lungs is characterized by multiple within-host bottlenecks that result in "islands" of infection in lung lobes, each with genetically distinct populations. We perform site-specific inoculation of barcoded IAV in the upper respiratory tract of ferrets and track viral diversity as infection spreads to the trachea and lungs. We detect extensive compartmentalization of discrete populations within lung lobes. Bottleneck events and localized replication stochastically sample individual viruses from the upper respiratory tract or the trachea that become the dominant genotype in a particular lobe. These populations are shaped strongly by founder effects, with limited evidence for positive selection. The segregated sites of replication highlight the jackpot-style events that contribute to within-host influenza virus evolution and may account for low rates of intrahost adaptation.


Assuntos
Vírus da Influenza A , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Furões , Genótipo , Humanos , Vírus da Influenza A/genética , Replicação Viral/genética
13.
Artigo em Inglês | MEDLINE | ID: mdl-33558285

RESUMO

Infections with respiratory viruses constitute a huge burden on our health and economy. Antivirals against some respiratory viruses are available, but further options are urgently needed. Enisamium iodide (laboratory code FAV00A, trade name Amizon) is an antiviral, marketed in countries of the Commonwealth of Independent States for the treatment of viral respiratory infections, but its clinical efficacy and mode of action are not well understood. In this study, we investigated the efficacy of enisamium in patients aged between 18 and 60 years with confirmed influenza virus and other viral respiratory infections. Enisamium treatment resulted in reduced influenza virus shedding (at day 3, 71.2% in the enisamium group tested negative versus 25.0% in placebo group [P < 0.0001]), faster patient recovery (at day 14, 93.9% in the enisamium group had recovered versus 32.5% in placebo group [P < 0.0001]), and reduced disease symptoms (from 9.6 ± 0.7 to 4.6 ± 0.9 score points in enisamium group versus 9.7 ± 1.1 to 5.6 ± 1.1 score points in placebo group [P < 0.0001]) compared to those in the placebo group. Using mass spectrometry, and cell-based and cell-free viral RNA synthesis assays, we identified a hydroxylated metabolite of enisamium, VR17-04. VR17-04 is capable of inhibiting influenza virus RNA synthesis and is present in plasma of patients treated with enisamium. VR17-04 inhibits the activity of the influenza virus RNA polymerase more potently than its parent compound. Overall, these results suggest that enisamium is metabolized in humans to an inhibitor of the influenza virus RNA polymerase that reduces viral shedding and improves patient recovery in influenza patients. (This study has been registered at ClinicalTrials.gov under identifier NCT04682444.).


Assuntos
Influenza Humana , Orthomyxoviridae , Infecções Respiratórias , Adolescente , Adulto , Humanos , Influenza Humana/tratamento farmacológico , Pessoa de Meia-Idade , Compostos de Piridínio , RNA Viral , Infecções Respiratórias/tratamento farmacológico , Proteínas do Complexo da Replicase Viral , Eliminação de Partículas Virais , Adulto Jovem
14.
PLoS Pathog ; 16(9): e1008841, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32881973

RESUMO

The influenza virus polymerase transcribes and replicates the viral genome. The proper timing and balance of polymerase activity is important for successful replication. Genome replication is controlled in part by phosphorylation of NP that regulates assembly of the replication machinery. However, it remains unclear whether phosphorylation directly regulated polymerase activity. Here we identified polymerase phosphosites that control its function. Mutating phosphosites in the catalytic subunit PB1 altered polymerase activity and virus replication. Biochemical analyses revealed phosphorylation events that disrupted global polymerase function by blocking the NTP entry channel or preventing RNA binding. We also identified a regulatory site that split polymerase function by specifically suppressing transcription. These experiments show that host kinases phospho-regulate viral RNA synthesis directly by modulating polymerase activity and indirectly by controlling assembly of replication machinery. Further, they suggest polymerase phosphorylation may bias replication versus transcription at discrete times or locations during the infectious cycle.


Assuntos
Vírus da Influenza A/fisiologia , RNA Viral/biossíntese , Transcrição Gênica , Proteínas Virais/metabolismo , Replicação Viral , Células A549 , Animais , Cães , Células HEK293 , Humanos , Células Madin Darby de Rim Canino , Fosforilação , RNA Viral/genética , Proteínas Virais/genética
16.
Nat Microbiol ; 5(12): 1490-1503, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32839537

RESUMO

Cells infected by influenza virus mount a large-scale antiviral response and most cells ultimately initiate cell-death pathways in an attempt to suppress viral replication. We performed a CRISPR-Cas9-knockout selection designed to identify host factors required for replication after viral entry. We identified a large class of presumptive antiviral factors that unexpectedly act as important proviral enhancers during influenza virus infection. One of these, IFIT2, is an interferon-stimulated gene with well-established antiviral activity but limited mechanistic understanding. As opposed to suppressing infection, we show in the present study that IFIT2 is instead repurposed by influenza virus to promote viral gene expression. CLIP-seq demonstrated that IFIT2 binds directly to viral and cellular messenger RNAs in AU-rich regions, with bound cellular transcripts enriched in interferon-stimulated mRNAs. Polysome and ribosome profiling revealed that IFIT2 prevents ribosome pausing on bound mRNAs. Together, the data link IFIT2 binding to enhanced translational efficiency for viral and cellular mRNAs and ultimately viral replication. Our findings establish a model for the normal function of IFIT2 as a protein that increases translation of cellular mRNAs to support antiviral responses and explain how influenza virus uses this same activity to redirect a classically antiviral protein into a proviral effector.


Assuntos
Proteínas Reguladoras de Apoptose/imunologia , Vírus da Influenza A/fisiologia , Influenza Humana/imunologia , Biossíntese de Proteínas , RNA Viral/genética , Proteínas de Ligação a RNA/imunologia , Animais , Proteínas Reguladoras de Apoptose/genética , Linhagem Celular , Interações Hospedeiro-Patógeno , Humanos , Vírus da Influenza A/genética , Influenza Humana/genética , Influenza Humana/virologia , Camundongos , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , Replicação Viral
17.
Annu Rev Virol ; 7(1): 167-187, 2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-32453972

RESUMO

Influenza virus exploits cellular factors to complete each step of viral replication. Yet, multiple host proteins actively block replication. Consequently, infection success depends on the relative speed and efficacy at which both the virus and host use their respective effectors. Post-translational modifications (PTMs) afford both the virus and the host means to readily adapt protein function without the need for new protein production. Here we use influenza virus to address concepts common to all viruses, reviewing how PTMs facilitate and thwart each step of the replication cycle. We also discuss advancements in proteomic methods that better characterize PTMs. Although some effectors and PTMs have clear pro- or antiviral functions, PTMs generally play regulatory roles to tune protein functions, levels, and localization. Synthesis of our current understanding reveals complex regulatory schemes where the effects of PTMs are time and context dependent as the virus and host battle to control infection.


Assuntos
Interações Hospedeiro-Patógeno/genética , Vírus da Influenza A/genética , Processamento de Proteína Pós-Traducional/genética , Replicação Viral , Linhagem Celular , Humanos , Vírus da Influenza A/fisiologia , Influenza Humana/virologia , Espectrometria de Massas , Proteômica/métodos , Proteínas Virais/metabolismo , Liberação de Vírus
18.
Artigo em Inglês | MEDLINE | ID: mdl-31871241

RESUMO

An ever-expanding toolkit of experimental methods provides the means to discover and characterize host factors important for influenza virus. Here, we describe common methods for investigating genetic relationships and physical interactions between virus and host. A comprehensive knowledge of host:virus interactions is key to understanding how influenza virus exploits the host cell and to potentially identify vulnerabilities that may be manipulated to prevent or treat disease.


Assuntos
Interações Hospedeiro-Patógeno , Orthomyxoviridae , Replicação Viral/fisiologia , Perfilação da Expressão Gênica/métodos , Técnicas de Inativação de Genes/métodos , Humanos , Influenza Humana/virologia , Polimorfismo de Nucleotídeo Único , Interferência de RNA/fisiologia
19.
Cell Rep ; 29(8): 2175-2183.e4, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31747592

RESUMO

All viruses balance interactions between cellular machinery co-opted to support replication and host factors deployed to halt the infection. We use gene correlation analysis to perform an unbiased screen for host factors involved in influenza A virus (FLUAV) infection. Our screen identifies the cellular factor epidermal growth factor receptor pathway substrate 8 (EPS8) as the highest confidence pro-viral candidate. Knockout and overexpression of EPS8 confirm its importance in enhancing FLUAV infection and titers. Loss of EPS8 does not affect virion attachment, uptake, or fusion. Rather, our data show that EPS8 specifically functions during virion uncoating. EPS8 physically associates with incoming virion components, and subsequent nuclear import of released ribonucleoprotein complexes is significantly delayed in the absence of EPS8. Our study identifies EPS8 as a host factor important for uncoating, a crucial step of FLUAV infection during which the interface between the virus and host is still being discovered.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Vírus da Influenza A/patogenicidade , Proteínas Adaptadoras de Transdução de Sinal/genética , Humanos , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Vírion/genética , Vírion/metabolismo
20.
mBio ; 10(4)2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31289186

RESUMO

The Escherichia coli hemolysin (HlyA) is a pore-forming exotoxin associated with severe complications of human urinary tract infections. HlyA is the prototype of the repeats-in-toxin (RTX) family, which includes LtxA from Aggregatibacter actinomycetemcomitans, a periodontal pathogen. The existence and requirement for a host cell receptor for these toxins are controversial. We performed an unbiased forward genetic selection in a mutant library of human monocytic cells, U-937, for host factors involved in HlyA cytotoxicity. The top candidate was the ß2 integrin ß subunit. Δß2 cell lines are approximately 100-fold more resistant than wild-type U-937 cells to HlyA, but remain sensitive to HlyA at high concentrations. Similarly, Δß2 cells are more resistant than wild-type U-937 cells to LtxA, as Δß2 cells remain LtxA resistant even at >1,000-fold-higher concentrations of the toxin. Loss of any single ß2 integrin α subunit, or even all four α subunits together, does not confer resistance to HlyA. HlyA and LtxA bind to the ß2 subunit, but not to αL, αM, or αX in far-Western blots. Genetic complementation of Δß2 cells with either ß2 or ß2 with a cytoplasmic tail deletion restores HlyA and LtxA sensitivity, suggesting that ß2 integrin signaling is not required for cytotoxicity. Finally, ß2 mutations do not alter sensitivity to unrelated pore-forming toxins, as wild-type or Δß2 cells are equally sensitive to Staphylococcus aureus α-toxin and Proteus mirabilis HpmA. Our studies show two RTX toxins use the ß2 integrin ß subunit alone to facilitate cytotoxicity, but downstream integrin signaling is dispensable.IMPORTANCE Urinary tract infections are one of the most common bacterial infections worldwide. Uropathogenic Escherichia coli strains are responsible for more than 80% of community-acquired urinary tract infections. Although we have known for nearly a century that severe infections stemming from urinary tract infections, including kidney or bloodstream infections are associated with expression of a toxin, hemolysin, from uropathogenic Escherichia coli, how hemolysin functions to enhance virulence is unknown. Our research defines the interaction of hemolysin with the ß2 integrin, a human white cell adhesion molecule, as a potential therapeutic target during urinary tract infections. The E. coli hemolysin is the prototype for a toxin family (RTX family) produced by a wide array of human and animal pathogens. Our work extends to the identification and characterization of the receptor for an additional member of the RTX family, suggesting that this interaction may be broadly conserved throughout the RTX toxin family.


Assuntos
Aggregatibacter actinomycetemcomitans/química , Antígenos CD18/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Exotoxinas/química , Proteínas Hemolisinas/química , Aggregatibacter actinomycetemcomitans/genética , Toxinas Bacterianas/química , Antígenos CD18/genética , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Escherichia coli/genética , Teste de Complementação Genética , Humanos , Monócitos/microbiologia , Monócitos/patologia , Mutação , Ligação Proteica , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...