Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 34(47): 14134-14142, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30379547

RESUMO

A methodology for determining the micropore, mesopore, and external surface areas of hierarchical microporous/mesoporous materials from N2 adsorption isotherms at 77 K is described. For FAU-Y zeolites, the microporous surface area calculated using the Rouquerol criterion and the Brunauer-Emmett-Teller (BET) equation is in accord with the geometrical surface determined by the chord length distribution method. Therefore, BET surface area ( SBET) is the well representative of micropore surface areas of microporous materials and of total surface area of microporous/mesoporous materials. Mechanical mixtures of mesoporous MCM-41 and microporous FAU-Y powders of known surface areas were used to calculate the respective surface areas by weighted linear combination and the results were compared to the values obtained by the t-plot method. The first slope of the t-plot determined the mesopore and external surface areas ( Smes+ext). The linear fit of the first slope is in general in the range 0.01 < p/ p0 < 0.17 and contains the volumes and relative pressures at which all micropores are filled ( p/ p0 > 0.10). Overestimation of Smes+ext values was evident and appropriate corrections were provided. External surface areas ( Sext) were obtained from the second slope of the t-plot, without noting an overestimation of Sext, thus allowing the determination of mesopore surface areas ( Smes) by difference. Micropore surface areas were calculated by subtracting Smes+ext from the total surface area, SBET. As an example, this methodology was applied to characterize a family of hierarchical microporous/mesoporous FAU-Y (FAUmes) synthesized from H-FAU-Y (H-Y, Si/Al = 15) using C18TAB as the surfactant and different NaOH/Si ratios (0.05 < NaOH/Si < 0.25). By increasing the NaOH/Si ratio in the synthesis of FAUmes, it was shown that as the micropore surface area decreases, the mesopore surface area increases, whereas the micropore and mesopore surface area remains constant. This methodology allows accurate characterization of the surface areas of microporous/mesoporous materials.

2.
Langmuir ; 34(38): 11414-11423, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-30188140

RESUMO

The texture of mesoporous FAU-Y (FAUmes) prepared by surfactant-templating in basic media is a subject of debate. It is proposed that mesoporous FAU-Y consists of: (1) ordered mesoporous zeolite networks formed by a surfactant-assisted zeolite rearrangement process involving local dissolution and reconstruction of the crystalline framework, and (2) ordered mesoporous amorphous phases as Al-MCM-41, which coexist with zeolite nanodomains obtained by a dissolution-reassembly process. By the present systematic study, performed with FAU-Y (Si/Al = 15) in the presence of octadecyltrimethylammonium bromide and 0 < NaOH/Si ratio < 0.25 at 115 °C for 20 h, we demonstrate that mesoporous FAU zeolites consist, in fact, of a complex family of materials with textural features strongly impacted by the experimental conditions. Two main families have been disclosed: (1) for 0.0625 < NaOH/Si < 0.10, FAUmes are ordered mesoporous materials with zeolite walls, which coexist with zeolite nanodomains (100-200 nm) and (2) for 0.125 < NaOH/Si < 0.25, FAUmes are ordered mesoporous materials with amorphous walls as Al-MCM-41, which coexist with zeolite nanodomains (5-100 nm). The zeolite nanodomains decrease in size with the increase of NaOH/Si ratio. Increasing NaOH/Si ratio leads to an increase of mesopore volume, while the total surface area remains constant, and to a decrease of strong acidity in line with the decrease of micropore volume. The ordered mesoporous materials with zeolite walls feature the highest acidity strength. The ordered mesoporous materials with amorphous walls present additional large pores (50-200 nm), which increase in size and amount with the increase of NaOH/Si ratio. This alkaline treatment of FAU-Y represents a way to obtain ordered mesoporous materials with zeolite walls with high mesopore volume for NaOH/Si = 0.10 and a new way to synthesize mesoporous Al-MCM-41 materials containing extralarge pores (50-200 nm) ideal for optimal diffusion (NaOH/Si = 0.25).

3.
Sci Rep ; 7: 40207, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-28106047

RESUMO

Nanoporous silicon produced by electrochemical etching of highly B-doped p-type silicon wafers can be prepared with tubular pores imbedded in a silicon matrix. Such materials have found many technological applications and provide a useful model system for studying phase transitions under confinement. This paper reports a joint experimental and simulation study of diffusion in such materials, covering displacements from molecular dimensions up to tens of micrometers with carefully selected probe molecules. In addition to mass transfer through the channels, diffusion (at much smaller rates) is also found to occur in directions perpendicular to the channels, thus providing clear evidence of connectivity. With increasing displacements, propagation in both axial and transversal directions is progressively retarded, suggesting a scale-dependent, hierarchical distribution of transport resistances ("constrictions" in the channels) and of shortcuts (connecting "bridges") between adjacent channels. The experimental evidence from these studies is confirmed by molecular dynamics (MD) simulation in the range of atomistic displacements and rationalized with a simple model of statistically distributed "constrictions" and "bridges" for displacements in the micrometer range via dynamic Monte Carlo (DMC) simulation. Both ranges are demonstrated to be mutually transferrable by DMC simulations based on the pore space topology determined by electron tomography.

4.
Chem Soc Rev ; 45(12): 3439-67, 2016 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-26759076

RESUMO

Adding mesopore networks in microporous materials using the principles of hierarchical structure design is recognized as a promising route for eliminating their transport limitations and, therefore, for improving their value in technological applications. Depending on the routes of physico-chemical procedures or post-synthesis treatments used, very different geometries of the intentionally-added transport mesopores can be obtained. Understanding the structure-dynamics relationships in these complex materials with multiple porosities under different thermodynamical conditions remains a challenging task. In this review, we summarize the results obtained so far on experimental and theoretical studies of diffusion in micro-mesoporous materials. By considering four common classes of bi-porous materials, which are differing by the inter-connectivities of their sup-spaces as one of the most important parameter determining the transport rates, we discuss their generic transport properties and correlate the results delivered by the equilibrium and non-equilibrium techniques of diffusion measurements.

5.
Chemphyschem ; 15(8): 1681-6, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24652677

RESUMO

Pulsed field gradient nuclear magnetic resonance (NMR) diffusion studies are performed by using cyclohexane to probe transport properties in a NaX-type zeolite with a hierarchical pore structure (house-of-cards-like assemblies of mesoporous nanosheets), which is compared with a purely microporous sample. With guest loadings chosen to ensure saturation of the micropores, and the meso- and macropores left essentially unoccupied, guest diffusion is shown to be enhanced by almost one order of magnitude, even at room temperature. Diffusivity enhancement is further increased with increasing temperature, which may, therefore, be unambiguously attributed to the contribution of mass transfer in the meso- and macropores.

6.
Materials (Basel) ; 6(7): 2662-2688, 2013 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28811401

RESUMO

The presence of mesopores in the interior of microporous particles may significantly improve their transport properties. Complementing previous macroscopic transient sorption experiments and pulsed field gradient NMR self-diffusion studies with such materials, the present study is dedicated to an in-depth study of molecular uptake and release on the individual particles of mesoporous zeolitic specimens, notably with samples of the narrow-pore structure types, CHA and LTA. The investigations are focused on determining the time constants and functional dependences of uptake and release. They include a systematic variation of the architecture of the mesopores and of the guest molecules under study as well as a comparison of transient uptake with blocked and un-blocked mesopores. In addition to accelerating intracrystalline mass transfer, transport enhancement by mesopores is found to be, possibly, also caused by a reduction of transport resistances on the particle surfaces.

7.
Chemphyschem ; 13(6): 1495-9, 2012 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-22389066

RESUMO

Specially synthesized extra-large crystallites of zeolite LTA with intentionally added mesoporosity are used for an in-depth study of guest diffusion in hierarchical nanoporous materials by the pulsed field gradient NMR technique. Using propane as a guest molecule, intracrystalline mass transfer is demonstrated to be adequately described by a single effective diffusivity resulting from the weighted average of the diffusivities in the two (micro- and meso-) pore spaces. Gas-kinetic order-of-magnitude estimates of the diffusivities are in satisfactory agreement with the experimental data and are thus shown to provide a straightforward means for predicting and quantifying the benefit of hierarchically structured nanoporous materials in comparison with their purely microporous equivalent.

8.
Materials (Basel) ; 5(4): 699-720, 2012 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28817004

RESUMO

With the advent of mesoporous zeolites, the exploration of their transport properties has become a task of primary importance for the auspicious application of such materials in separation technology and heterogeneous catalysis. After reviewing the potential of the pulsed field gradient method of NMR (PFG NMR) for this purpose in general, in a case study using a specially prepared mesoporous zeolite NaCaA as a host system and propane as a guest molecule, examples of the attainable information are provided.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA