Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Process Impacts ; 24(8): 1195-1211, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35829655

RESUMO

Filtered and particulate mercury (Hg) and methylmercury (MMHg), and associated water chemistry parameters, were evaluated bi-hourly for several 30 h periods during the summer and winter seasons at several distinct locations (downstream forested, midstream urban/suburban, upstream industrial) along a creek contaminated with high levels of inorganic Hg to determine if biogeochemical Hg and MMHg cycles respond to the daily photocycle. In summer particulate Hg and MMHg concentrations doubled overnight (excluding the upstream industrial site) concurrent with increases in turbidity and total suspended sediment; no such pattern was evident in winter. Seasonal and diel changes in the activity of macrobiota affecting the suspension of contaminated sediments are likely responsible for these patterns as other potential explanatory variables (e.g., instrument drift, pH, discharge) could not account for the range and timing of our observations. Diel patterns in filtered Hg (HgD) were significant only at locations and times of the year when channel shading was not present and daytime concentrations increased 22-89% above nighttime minima likely caused by direct and indirect photochemical reactions. Relationships between HgD and dissolved organic carbon (DOC) concentration or character were inconsistent between sites. Unlike HgD, there were significant diel patterns in filtered MMHg (MMHgD) at all sites and times of year, with summer concentrations peaking in mid to late afternoon while the timing differed in winter, with concentrations peaking after sunset. Daily variability in MMHgD concentration ranged between 25 and 75%. The results imply key controls on net methylation occur within the stream or on the stream bed and include factors such as small-scale temperature changes in the water column and photosynthetic activity of stream biofilm. With respect to stream monitoring, results from this study indicate (1) consistent timing in stream Hg and MMHg sampling is required for accurate assessment of long-term trends, (2) in situ measurements of turbidity can be used to quantify diel dynamics of both particulate Hg and MMHg concentrations, and (3) in situ fluorescing dissolved organic matter (FDOM), a potential proxy for DOC, was not capable of resolving diel dynamics of filtered Hg or MMHg.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Monitoramento Ambiental/métodos , Mercúrio/análise , Água , Poluentes Químicos da Água/análise
2.
Chemosphere ; 255: 126951, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32417512

RESUMO

The processing of sediment to accurately characterize the spatially-resolved depth profiles of geophysical and geochemical properties along with signatures of microbial density and activity remains a challenge especially in complex contaminated areas. This study processed cores from two sediment boreholes from background and contaminated core sediments and surrounding groundwater. Fresh core sediments were compared by depth to capture the changes in sediment structure, sediment minerals, biomass, and pore water geochemistry in terms of major and trace elements including pollutants, cations, anions, and organic acids. Soil porewater samples were matched to groundwater level, flow rate, and preferential flows and compared to homogenized groundwater-only samples from neighboring monitoring wells. Groundwater analysis of nearby wells only revealed high sulfate and nitrate concentrations while the same analysis using sediment pore water samples with depth was able to suggest areas high in sulfate- and nitrate-reducing bacteria based on their decreased concentration and production of reduced by-products that could not be seen in the groundwater samples. Positive correlations among porewater content, total organic carbon, trace metals and clay minerals revealed a more complicated relationship among contaminant, sediment texture, groundwater table, and biomass. The fluctuating capillary interface had high concentrations of Fe and Mn-oxides combined with trace elements including U, Th, Sr, Ba, Cu, and Co. This suggests the mobility of potentially hazardous elements, sediment structure, and biogeochemical factors are all linked together to impact microbial communities, emphasizing that solid interfaces play an important role in determining the abundance of bacteria in the sediments.


Assuntos
Sedimentos Geológicos/química , Urânio/química , Poluentes Radioativos da Água/química , Bactérias , Água Subterrânea/química , Nitratos/análise , Compostos Orgânicos , Sulfatos/análise , Urânio/análise , Poluentes Radioativos da Água/análise
3.
J Environ Sci (China) ; 85: 156-167, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31471022

RESUMO

This study evaluated uranium sequestration performance in iron-rich (30 g/kg) sediment via bioreduction followed by reoxidation. Field tests (1383 days) at Oak Ridge, Tennessee demonstrated that uranium contents in sediments increased after bioreduced sediments were re-exposed to nitrate and oxygen in contaminated groundwater. Bioreduction of contaminated sediments (1200 mg/kg U) with ethanol in microcosm reduced aqueous U from 0.37 to 0.023 mg/L. Aliquots of the bioreduced sediment were reoxidized with O2, H2O2, and NaNO3, respectively, over 285 days, resulting in aqueous U of 0.024, 1.58 and 14.4 mg/L at pH 6.30, 6.63 and 7.62, respectively. The source- and the three reoxidized sediments showed different desorption and adsorption behaviors of U, but all fit a Freundlich model. The adsorption capacities increased sharply at pH 4.5 to 5.5, plateaued at pH 5.5 to 7.0, then decreased sharply as pH increased from 7.0 to 8.0. The O2-reoxidized sediment retained a lower desorption efficiency at pH over 6.0. The NO3--reoxidized sediment exhibited higher adsorption capacity at pH 5.5 to 6.0. The pH-dependent adsorption onto Fe(III) oxides and formation of U coated particles and precipitates resulted in U sequestration, and bioreduction followed by reoxidation can enhance the U sequestration in sediment.


Assuntos
Biodegradação Ambiental , Poluentes Radioativos do Solo/metabolismo , Urânio/metabolismo , Sedimentos Geológicos/química , Poluentes Radioativos do Solo/química , Tennessee , Urânio/química
4.
Sci Total Environ ; 690: 410-416, 2019 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-31299573

RESUMO

Mercury (Hg) contamination of soils and sediments impacts numerous environments worldwide and constitutes a challenging remediation problem. In this study, we evaluate the impact of dissolved organic matter (DOM) on the effectiveness of eight sorbent materials considered for Hg remediation in soils and sediments. The materials include both engineered and unmodified materials based on carbon, clays, mesoporous silica and a copper alloy. Initially, we investigated the kinetics of Hg(II) complexation with DOM for a series of Hg:DOM ratios. Steady-state Hg-DOM complexation occurred within 48 to 120 h, taking longer time at higher Hg:DOC (dissolved organic carbon) molar ratios. In subsequent equilibrium experiments, Hg(II) was equilibrated with DOM at a defined Hg:DOC molar ratio (2.4 ·â€¯10-6) for 170 h and used in batch experiments to determine the effect of DOM on Hg partition coefficients and sorption isotherms by comparing Hg(II) and Hg-DOM. Hg sorption capacities of all sorbents were severely limited in the presence of DOM as a competing ligand. Thiol-SAMMS®, SediMite™ and pine biochar were most effective in reducing Hg concentrations. While pine biochar and lignin-derived carbon processed at high temperatures released negligible amounts of anions into solution, leaching of sulfate and chloride was observed for most engineered sorbent materials. Sulfate may stimulate microbial communities harboring sulfate reducing bacteria, which are considered one of the primary drivers of microbial mercury methylation in the environment. The results highlight potential challenges arising from the application of sorbents for Hg remediation in the field.

5.
Appl Environ Microbiol ; 84(9)2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29453264

RESUMO

A site in Oak Ridge, TN, USA, has sediments that contain >3% iron oxides and is contaminated with uranium (U). The U(VI) was bioreduced to U(IV) and immobilized in situ through intermittent injections of ethanol. It then was allowed to reoxidize via the invasion of low-pH (3.6 to 4.0), high-nitrate (up to 200 mM) groundwater back into the reduced zone for 1,383 days. To examine the biogeochemical response, high-throughput sequencing and network analysis were applied to characterize bacterial population shifts, as well as cooccurrence and coexclusion patterns among microbial communities. A paired t test indicated no significant changes of α-diversity for the bioactive wells. However, both nonmetric multidimensional scaling and analysis of similarity confirmed a significant distinction in the overall composition of the bacterial communities between the bioreduced and the reoxidized sediments. The top 20 major genera accounted for >70% of the cumulative contribution to the dissimilarity in the bacterial communities before and after the groundwater invasion. Castellaniella had the largest dissimilarity contribution (17.7%). For the bioactive wells, the abundance of the U(VI)-reducing genera Geothrix, Desulfovibrio, Ferribacterium, and Geobacter decreased significantly, whereas the denitrifying Acidovorax abundance increased significantly after groundwater invasion. Additionally, seven genera, i.e., Castellaniella, Ignavibacterium, Simplicispira, Rhizomicrobium, Acidobacteria Gp1, Acidobacteria Gp14, and Acidobacteria Gp23, were significant indicators of bioactive wells in the reoxidation stage. Canonical correspondence analysis indicated that nitrate, manganese, and pH affected mostly the U(VI)-reducing genera and indicator genera. Cooccurrence patterns among microbial taxa suggested the presence of taxa sharing similar ecological niches or mutualism/commensalism/synergism interactions.IMPORTANCE High-throughput sequencing technology in combination with a network analysis approach were used to investigate the stabilization of uranium and the corresponding dynamics of bacterial communities under field conditions with regard to the heterogeneity and complexity of the subsurface over the long term. The study also examined diversity and microbial community composition shift, the common genera, and indicator genera before and after long-term contaminated-groundwater invasion and the relationship between the target functional community structure and environmental factors. Additionally, deciphering cooccurrence and coexclusion patterns among microbial taxa and environmental parameters could help predict potential biotic interactions (cooperation/competition), shared physiologies, or habitat affinities, thus, improving our understanding of ecological niches occupied by certain specific species. These findings offer new insights into compositions of and associations among bacterial communities and serve as a foundation for future bioreduction implementation and monitoring efforts applied to uranium-contaminated sites.


Assuntos
Fenômenos Fisiológicos Bacterianos , Microbiota , Urânio/efeitos adversos , Biodegradação Ambiental , Água Subterrânea/química , Sequenciamento de Nucleotídeos em Larga Escala , Nitratos/química , Oxirredução , Tennessee
6.
Environ Sci Technol ; 51(5): 2879-2889, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28112946

RESUMO

Temporal variability complicates testing the influences of environmental variability on microbial community structure and thus function. An in-field bioreactor system was developed to assess oxic versus anoxic manipulations on in situ groundwater communities. Each sample was sequenced (16S SSU rRNA genes, average 10,000 reads), and biogeochemical parameters are monitored by quantifying 53 metals, 12 organic acids, 14 anions, and 3 sugars. Changes in dissolved oxygen (DO), pH, and other variables were similar across bioreactors. Sequencing revealed a complex community that fluctuated in-step with the groundwater community and responded to DO. This also directly influenced the pH, and so the biotic impacts of DO and pH shifts are correlated. A null model demonstrated that bioreactor communities were driven in part not only by experimental conditions but also by stochastic variability and did not accurately capture alterations in diversity during perturbations. We identified two groups of abundant OTUs important to this system; one was abundant in high DO and pH and contained heterotrophs and oxidizers of iron, nitrite, and ammonium, whereas the other was abundant in low DO with the capability to reduce nitrate. In-field bioreactors are a powerful tool for capturing natural microbial community responses to alterations in geochemical factors beyond the bulk phase.


Assuntos
Bactérias/genética , Reatores Biológicos , Água Subterrânea/química , Nitritos , RNA Ribossômico 16S/genética
7.
Front Microbiol ; 7: 794, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27303383

RESUMO

RNA-seq is being used increasingly for gene expression studies and it is revolutionizing the fields of genomics and transcriptomics. However, the field of RNA-seq analysis is still evolving. Therefore, we specifically designed this study to contain large numbers of reads and four biological replicates per condition so we could alter these parameters and assess their impact on differential expression results. Bacillus thuringiensis strains ATCC10792 and CT43 were grown in two Luria broth medium lots on four dates and transcriptomics data were generated using one lane of sequence output from an Illumina HiSeq2000 instrument for each of the 32 samples, which were then analyzed using DESeq2. Genome coverages across samples ranged from 87 to 465X with medium lots and culture dates identified as major variation sources. Significantly differentially expressed genes (5% FDR, two-fold change) were detected for cultures grown using different medium lots and between different dates. The highly differentially expressed iron acquisition and metabolism genes, were a likely consequence of differing amounts of iron in the two media lots. Indeed, in this study RNA-seq was a tool for predictive biology since we hypothesized and confirmed the two LB medium lots had different iron contents (~two-fold difference). This study shows that the noise in data can be controlled and minimized with appropriate experimental design and by having the appropriate number of replicates and reads for the system being studied. We outline parameters for an efficient and cost effective microbial transcriptomics study.

8.
mBio ; 6(3): e00326-15, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25968645

RESUMO

UNLABELLED: Biological sensors can be engineered to measure a wide range of environmental conditions. Here we show that statistical analysis of DNA from natural microbial communities can be used to accurately identify environmental contaminants, including uranium and nitrate at a nuclear waste site. In addition to contamination, sequence data from the 16S rRNA gene alone can quantitatively predict a rich catalogue of 26 geochemical features collected from 93 wells with highly differing geochemistry characteristics. We extend this approach to identify sites contaminated with hydrocarbons from the Deepwater Horizon oil spill, finding that altered bacterial communities encode a memory of prior contamination, even after the contaminants themselves have been fully degraded. We show that the bacterial strains that are most useful for detecting oil and uranium are known to interact with these substrates, indicating that this statistical approach uncovers ecologically meaningful interactions consistent with previous experimental observations. Future efforts should focus on evaluating the geographical generalizability of these associations. Taken as a whole, these results indicate that ubiquitous, natural bacterial communities can be used as in situ environmental sensors that respond to and capture perturbations caused by human impacts. These in situ biosensors rely on environmental selection rather than directed engineering, and so this approach could be rapidly deployed and scaled as sequencing technology continues to become faster, simpler, and less expensive. IMPORTANCE: Here we show that DNA from natural bacterial communities can be used as a quantitative biosensor to accurately distinguish unpolluted sites from those contaminated with uranium, nitrate, or oil. These results indicate that bacterial communities can be used as environmental sensors that respond to and capture perturbations caused by human impacts.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Técnicas Biossensoriais , Água Subterrânea/microbiologia , Consórcios Microbianos , Poluição por Petróleo/análise , Poluentes da Água/análise , Bactérias/genética , DNA Bacteriano/análise , DNA Ribossômico/genética , Ecossistema , Genes de RNAr , Água Subterrânea/química , Hidrocarbonetos/análise , Consórcios Microbianos/genética , Nitratos/análise , Filogenia , RNA Ribossômico 16S/genética , Urânio/análise , Contaminação Radioativa da Água/análise
9.
Appl Environ Microbiol ; 81(15): 4976-83, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25979890

RESUMO

The concentrations of molybdenum (Mo) and 25 other metals were measured in groundwater samples from 80 wells on the Oak Ridge Reservation (ORR) (Oak Ridge, TN), many of which are contaminated with nitrate, as well as uranium and various other metals. The concentrations of nitrate and uranium were in the ranges of 0.1 µM to 230 mM and <0.2 nM to 580 µM, respectively. Almost all metals examined had significantly greater median concentrations in a subset of wells that were highly contaminated with uranium (≥126 nM). They included cadmium, manganese, and cobalt, which were 1,300- to 2,700-fold higher. A notable exception, however, was Mo, which had a lower median concentration in the uranium-contaminated wells. This is significant, because Mo is essential in the dissimilatory nitrate reduction branch of the global nitrogen cycle. It is required at the catalytic site of nitrate reductase, the enzyme that reduces nitrate to nitrite. Moreover, more than 85% of the groundwater samples contained less than 10 nM Mo, whereas concentrations of 10 to 100 nM Mo were required for efficient growth by nitrate reduction for two Pseudomonas strains isolated from ORR wells and by a model denitrifier, Pseudomonas stutzeri RCH2. Higher concentrations of Mo tended to inhibit the growth of these strains due to the accumulation of toxic concentrations of nitrite, and this effect was exacerbated at high nitrate concentrations. The relevance of these results to a Mo-based nitrate removal strategy and the potential community-driving role that Mo plays in contaminated environments are discussed.


Assuntos
Desnitrificação , Água Subterrânea/química , Água Subterrânea/microbiologia , Molibdênio/metabolismo , Nitratos/metabolismo , Pseudomonas stutzeri/metabolismo , Coenzimas/metabolismo , Nitrato Redutase/metabolismo , Pseudomonas stutzeri/crescimento & desenvolvimento , Tennessee
10.
Water Res ; 47(17): 6566-73, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24070865

RESUMO

A surge block treatment method (i.e. inserting a solid rod plunger with a flat seal that closely fits the casing interior into a well and stocking it up and down) was performed for the rehabilitation of wells clogged with biomass and for the collection of time series sediment samples during in situ bioremediation tests for U(VI) immobilization at a the U.S. Department of Energy site in Oak Ridge, TN. The clogging caused by biomass growth had been controlled by using routine surge block treatment for 18 times over a nearly four year test period. The treatment frequency was dependent of the dosage of electron donor injection and microbial community developed in the subsurface. Hydraulic tests showed that the apparent aquifer transmissivity at a clogged well with an inner diameter (ID) of 10.16 cm was increased by 8-13 times after the rehabilitation, indicating the effectiveness of the rehabilitation. Simultaneously with the rehabilitation, the surge block method was successfully used for collecting time series sediment samples composed of fine particles (clay and silt) from wells with ID 1.9-10.16 cm for the analysis of mineralogical and geochemical composition and microbial community during the same period. Our results demonstrated that the surge block method provided a cost-effective approach for both well rehabilitation and frequent solid sampling at the same location.


Assuntos
Sedimentos Geológicos/química , Poços de Água/química , Bactérias/metabolismo , Biodegradação Ambiental , Brometos/isolamento & purificação , Microscopia Eletrônica de Varredura , Fatores de Tempo , Urânio/isolamento & purificação , Poluentes Radioativos da Água/isolamento & purificação
11.
Environ Sci Technol ; 47(12): 6440-8, 2013 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-23697787

RESUMO

A field test with a one-time emulsified vegetable oil (EVO) injection was conducted to assess the capacity of EVO to sustain uranium bioreduction in a high-permeability gravel layer with groundwater concentrations of (mM) U, 0.0055; Ca, 2.98; NO3(-), 0.11; HCO3(-), 5.07; and SO4(2-), 1.23. Comparison of bromide and EVO migration and distribution indicated that a majority of the injected EVO was retained in the subsurface from the injection wells to 50 m downgradient. Nitrate, uranium, and sulfate were sequentially removed from the groundwater within 1-2 weeks, accompanied by an increase in acetate, Mn, Fe, and methane concentrations. Due to the slow release and degradation of EVO with time, reducing conditions were sustained for approximately one year, and daily U discharge to a creek, located approximately 50 m from the injection wells, decreased by 80% within 100 days. Total U discharge was reduced by 50% over the one-year period. Reduction of U(VI) to U(IV) was confirmed by synchrotron analysis of recovered aquifer solids. Oxidants (e.g., dissolved oxygen, nitrate) flowing in from upgradient appeared to reoxidize and remobilize uranium after the EVO was exhausted as evidenced by a transient increase of U concentration above ambient values. Occasional (e.g., annual) EVO injection into a permeable Ca and bicarbonate-containing aquifer can sustain uranium bioreduction/immobilization and decrease U migration/discharge.


Assuntos
Biodegradação Ambiental , Óleos de Plantas/química , Urânio/química , Verduras/química , Elétrons , Ferro/química , Manganês/química , Metano/química
12.
Appl Environ Microbiol ; 77(17): 5955-65, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21764967

RESUMO

Subsurface amendments of slow-release substrates (e.g., emulsified vegetable oil [EVO]) are thought to be a pragmatic alternative to using short-lived, labile substrates for sustained uranium bioimmobilization within contaminated groundwater systems. Spatial and temporal dynamics of subsurface microbial communities during EVO amendment are unknown and likely differ significantly from those of populations stimulated by soluble substrates, such as ethanol and acetate. In this study, a one-time EVO injection resulted in decreased groundwater U concentrations that remained below initial levels for approximately 4 months. Pyrosequencing and quantitative PCR of 16S rRNA from monitoring well samples revealed a rapid decline in groundwater bacterial community richness and diversity after EVO injection, concurrent with increased 16S rRNA copy levels, indicating the selection of a narrow group of taxa rather than a broad community stimulation. Members of the Firmicutes family Veillonellaceae dominated after injection and most likely catalyzed the initial oil decomposition. Sulfate-reducing bacteria from the genus Desulforegula, known for long-chain fatty acid oxidation to acetate, also dominated after EVO amendment. Acetate and H(2) production during EVO degradation appeared to stimulate NO(3)(-), Fe(III), U(VI), and SO(4)(2-) reduction by members of the Comamonadaceae, Geobacteriaceae, and Desulfobacterales. Methanogenic archaea flourished late to comprise over 25% of the total microbial community. Bacterial diversity rebounded after 9 months, although community compositions remained distinct from the preamendment conditions. These results demonstrated that a one-time EVO amendment served as an effective electron donor source for in situ U(VI) bioreduction and that subsurface EVO degradation and metal reduction were likely mediated by successive identifiable guilds of organisms.


Assuntos
Archaea/classificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Poluentes Ambientais/metabolismo , Consórcios Microbianos , Urânio/metabolismo , Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Análise por Conglomerados , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Genes de RNAr , RNA Arqueal/genética , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Microbiologia do Solo
13.
J Hazard Mater ; 183(1-3): 482-9, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20702039

RESUMO

Microcosm tests with uranium contaminated sediments were performed to explore the feasibility of using oleate as a slow-release electron donor for U(VI) reduction in comparison to ethanol. Oleate degradation proceeded more slowly than ethanol with acetate produced as an intermediate for both electron donors under a range of initial sulfate concentrations. A kinetic microbial reduction model was developed and implemented to describe and compare the reduction of sulfate and U(VI) with oleate or ethanol. The reaction path model considers detailed oleate/ethanol degradation and the production and consumption of intermediates, acetate and hydrogen. Although significant assumptions are made, the model tracked the major trend of sulfate and U(VI) reduction and describes the successive production and consumption of acetate, concurrent with microbial reduction of aqueous sulfate and U(VI) species. The model results imply that the overall rate of U(VI) bioreduction is influenced by both the degradation rate of organic substrates and consumption rate of intermediate products.


Assuntos
Biodegradação Ambiental , Descontaminação/métodos , Etanol/química , Modelos Químicos , Ácido Oleico/química , Urânio/química , Cinética , Substâncias Redutoras/química , Sulfatos
14.
Environ Sci Technol ; 44(13): 5104-11, 2010 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-20527772

RESUMO

The effects of nitrate on the stability of reduced, immobilized uranium were evaluated in field experiments at a U.S. Department of Energy site in Oak Ridge, TN. Nitrate (2.0 mM) was injected into a reduced region of the subsurface containing high levels of previously immobilized U(IV). The nitrate was reduced to nitrite, ammonium, and nitrogen gas; sulfide levels decreased; and Fe(II) levels increased then deceased. Uranium remobilization occurred concomitant with nitrite formation, suggesting nitrate-dependent, iron-accelerated oxidation of U(IV). Bromide tracer results indicated changes in subsurface flowpaths likely due to gas formation and/or precipitate. Desorption-adsorption of uranium by the iron-rich sediment impacted uranium mobilization and sequestration. After rereduction of the subsurface through ethanol additions, background groundwater containing high levels of nitrate was allowed to enter the reduced test zone. Aqueous uranium concentrations increased then decreased. Clone library analyses of sediment samples revealed the presence of denitrifying bacteria that can oxidize elemental sulfur, H(2)S, Fe(II), and U(IV) (e.g., Thiobacillus spp.), and a decrease in relative abundance of bacteria that can reduce Fe(III) and sulfate. XANES analyses of sediment samples confirmed changes in uranium oxidation state. Addition of ethanol restored reduced conditions and triggered a short-term increase in Fe(II) and aqueous uranium, likely due to reductive dissolution of Fe(III) oxides and release of sorbed U(VI). After two months of intermittent ethanol addition, sulfide levels increased, and aqueous uranium concentrations gradually decreased to <0.1 microM.


Assuntos
Nitratos/química , Urânio/química , Poluentes Químicos da Água/análise , Biodegradação Ambiental , Gases , Sedimentos Geológicos/química , Concentração de Íons de Hidrogênio , Nitritos/química , Nitrogênio/química , Oxigênio/química , RNA Ribossômico 16S/metabolismo , Sulfetos/química , Enxofre/química , Propriedades de Superfície
15.
J Environ Qual ; 37(6): 2116-24, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18948465

RESUMO

In-situ stabilization using phosphate (P) amendments, such as P-based fertilizers and rock, are a potentially cost-effective and minimally disruptive alternative for stabilizing Pb in soils. We examined the effect of time (0-365 d), in vitro extraction pH (1.5 vs. 2.3), and dosage of three P-based amendments on the bioaccessibility (as a surrogate for oral bioavailability) of Pb in 10 soils from U.S. Department of Defense facilities. Initial untreated soil bioaccessibility consistently exceeded the U.S. Environmental Protection Agency default value of 60% relative bioavailability, with higher bioaccessibility consistently observed at an in vitro extraction pH of 1.5 vs. 2.3. Although P-based amendments statistically (P < 0.05) reduced bioaccessibility in many instances, with reductions dependent on the amendment and dosage, large amendment dosages (approximately 20-25% by mass to yield 5% P by mass) were required to reduce average bioaccessibility by approximately 25%. For most amendment combinations, reductions continued to occur for periods up to 1 yr, indicating that the observed reductions were not merely experimental artifacts of the in vitro extraction procedure. Although our results indicated that reductions in Pb bioaccessibility with P amendments are technically feasible, relatively large amendment masses were required to achieve relatively modest reductions in bioaccessibility. The cost and potential environmental implications of adding such large amounts of P may limit the practicality of in situ immobilization for some Pb-contaminated soils, industrial and firing range soils in particular.


Assuntos
Chumbo/química , Chumbo/metabolismo , Fosfatos/química , Poluentes do Solo/química , Poluentes do Solo/metabolismo , Solo/análise , Armas de Fogo , Resíduos Industriais , Indústrias
16.
Environ Sci Technol ; 41(16): 5716-23, 2007 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-17874778

RESUMO

Groundwater within Area 3 of the U.S. Department of Energy (DOE) Environmental Remediation Sciences Program (ERSP) Field Research Center at Oak Ridge, TN (ORFRC) contains up to 135 microM uranium as U(VI). Through a series of experiments at a pilot scale test facility, we explored the lower limits of groundwater U(VI) that can be achieved by in-situ biostimulation and the effects of dissolved oxygen on immobilized uranium. Weekly 2 day additions of ethanol over a 2-year period stimulated growth of denitrifying, Fe(III)-reducing, and sulfate-reducing bacteria, and immobilization of uranium as U(IV), with dissolved uranium concentrations decreasing to low levels. Following sulfite addition to remove dissolved oxygen, aqueous U(VI) concentrations fell below the U.S. Environmental Protection Agengy maximum contaminant limit (MCL) for drinking water (< 30/microg L(-1) or 0.126 microM). Under anaerobic conditions, these low concentrations were stable, even in the absence of added ethanol. However, when sulfite additions stopped, and dissolved oxygen (4.0-5.5 mg L(-1)) entered the injection well, spatially variable changes in aqueous U(VI) occurred over a 60 day period, with concentrations increasing rapidly from < 0.13 to 2.0 microM at a multilevel sampling (MLS) well located close to the injection well, but changing little at an MLS well located further away. Resumption of ethanol addition restored reduction of Fe(III), sulfate, and U(VI) within 36 h. After 2 years of ethanol addition, X-ray absorption near-edge structure spectroscopy (XANES) analyses indicated that U(IV) comprised 60-80% of the total uranium in sediment samples. Atthe completion of the project (day 1260), U concentrations in MLS wells were less than 0.1 microM. The microbial community at MLS wells with low U(VI) contained bacteria that are known to reduce uranium, including Desulfovibrio spp. and Geobacter spp., in both sediment and groundwater. The dominant Fe(III)-reducing species were Geothrix spp.


Assuntos
Oxigênio/metabolismo , Urânio/isolamento & purificação , Bactérias/metabolismo , Biodegradação Ambiental , Etanol , Água Doce/química , Sedimentos Geológicos/química , Oxirredução , Solo , Solubilidade , Análise Espectral , Estados Unidos , United States Environmental Protection Agency , Urânio/metabolismo , Poluentes Radioativos da Água/isolamento & purificação , Poluentes Radioativos da Água/metabolismo
17.
Environ Sci Technol ; 40(12): 3978-85, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16830571

RESUMO

To evaluate the potential for in situ bioremediation of U(VI) to sparingly soluble U(IV), we constructed a pilot test facility at Area 3 of the U.S. Department of Energy Natural and Accelerated Bioremediation Research (NABIR) Field Research Center (FRC) in Oak Ridge, TN. The facility is adjacent to the former S-3 Ponds which received trillions of liters of acidic plating wastes. High levels of uranium are present, with up to 800 mg kg(-1) in the soil and 84-210 microM in the groundwater. Ambient groundwater has a highly buffered pH of approximately 3.4 and high levels of aluminum (12-13 mM), calcium (22-25 mM), and nitrate (80-160 mM). Adjusting the pH of groundwater to approximately 5 within the aquifer would deposit extensive aluminum hydroxide precipitate. Calcium is present in the groundwater at levels that inhibit U(VI) reduction, but its removal by injection of a high pH solution would generate clogging precipitate. Nitrate also inhibits U(VI) reduction and is present at such high concentrations that its removal by in situ denitrification would generate large amounts of N2 gas and biomass. To establish and maintain hydraulic control, we installed a four well recirculation system parallel to geologic strike, with an inner loop nested within an outer loop. For monitoring, we drilled three boreholes perpendicular to strike across the inner loop and installed multilevel sampling tubes within them. A tracer pulse with clean water established travel times and connectivity between wells and enabled the assessment of contaminant release from the soil matrix. Subsequently, a highly conductive region of the subsurface was prepared for biostimulation by removing clogging agents and inhibitors and increasing pH. For 2 months, groundwater was pumped from the hydraulically conductive zone; treated to remove aluminum, calcium, and nitrate, and supplemented with tap water; adjusted to pH 4.3-4.5; then returned to the hydraulically conductive zone. This protocol removed most of the aqueous aluminum and calcium. The pH of the injected treated water was then increased to 6.0-6.3. With additional flushing, the pH of the extracted water gradually increased to 5.5-6.0, and nitrate concentrations fell to 0.5-1.0 mM. These conditions were judged suitable for biostimulation. In a companion paper (Wu et al., Environ. Sci. Technol. 2006, 40, 3978-3987), we describe the effects of ethanol addition on in situ denitrification and U(VI) reduction and immobilization.


Assuntos
Descontaminação , Água Doce/química , Urânio/metabolismo , Poluentes Radioativos da Água/metabolismo , Purificação da Água , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Biodegradação Ambiental , Descontaminação/instrumentação , Descontaminação/métodos , Desenho de Equipamento , Concentração de Íons de Hidrogênio , Nitratos/análise , Compostos Orgânicos/análise , Projetos Piloto , Resíduos Radioativos , Urânio/análise , Poluentes Químicos da Água/química , Poluentes Radioativos da Água/análise , Purificação da Água/instrumentação , Purificação da Água/métodos
18.
Environ Sci Technol ; 40(12): 3986-95, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16830572

RESUMO

In situ microbial reduction of soluble U(VI) to sparingly soluble U(IV) was evaluated at the site of the former S-3 Ponds in Area 3 of the U.S. Department of Energy Natural and Accelerated Bioremediation Research Field Research Center, Oak Ridge, TN. After establishing conditions favorable for bioremediation (Wu, et al. Environ. Sci. Technol. 2006, 40, 3988-3995), intermittent additions of ethanol were initiated within the conditioned inner loop of a nested well recirculation system. These additions initially stimulated denitrification of matrix-entrapped nitrate, but after 2 months, aqueous U levels fell from 5 to approximately 1 microM and sulfate reduction ensued. Continued additions sustained U(VI) reduction over 13 months. X-ray near-edge absorption spectroscopy (XANES) confirmed U(VI) reduction to U(IV) within the inner loop wells, with up to 51%, 35%, and 28% solid-phase U(IV) in sediment samples from the injection well, a monitoring well, and the extraction well, respectively. Microbial analyses confirmed the presence of denitrifying, sulfate-reducing, and iron-reducing bacteria in groundwater and sediments. System pH was generally maintained at less than 6.2 with low bicarbonate level (0.75-1.5 mM) and residual sulfate to suppress methanogenesis and minimize uranium mobilization. The bioavailability of sorbed U(VI) was manipulated by addition of low-level carbonate (< 5 mM) followed by ethanol (1-1.5 mM). Addition of low levels of carbonate increased the concentration of aqueous U, indicating an increased rate of U desorption due to formation of uranyl carbonate complexes. Upon ethanol addition, aqueous U(VI) levels fell, indicating that the rate of microbial reduction exceeded the rate of desorption. Sulfate levels simultaneously decreased, with a corresponding increase in sulfide. When ethanol addition ended but carbonate addition continued, soluble U levels increased, indicating faster desorption than reduction. When bicarbonate addition stopped, aqueous U levels decreased, indicating adsorption to sediments. Changes in the sequence of carbonate and ethanol addition confirmed that carbonate-controlled desorption increased bioavailability of U(VI) for reduction.


Assuntos
Descontaminação , Água Doce/química , Sedimentos Geológicos/química , Urânio/metabolismo , Poluentes Radioativos da Água/metabolismo , Purificação da Água , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Bicarbonatos/metabolismo , Biodegradação Ambiental , Disponibilidade Biológica , Meios de Cultura , Descontaminação/instrumentação , Descontaminação/métodos , Desenho de Equipamento , Etanol/metabolismo , Água Doce/microbiologia , Sedimentos Geológicos/microbiologia , Oxirredução , Projetos Piloto , Resíduos Radioativos , Urânio/química , Poluentes Radioativos da Água/química , Purificação da Água/instrumentação , Purificação da Água/métodos
19.
Ground Water ; 44(2): 266-74, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16556208

RESUMO

We characterize the hydraulics of an extraction-injection well pair in arbitrarily oriented regional flow by the recirculation ratio, area, and average residence time in the recirculation zone. Erratic regional flow conditions may compromise the performance of the reactor between a single well pair. We propose an alternative four-well system: two downgradient extraction and two upgradient injection wells creating an inner cell nested within an outer cell. The outer cell protects the inner cell from the influence of regional flow. Compared to a two-well system, the proposed four-well system has several advantages: (1) the recirculation ratio within the nested inner cell is less sensitive to the regional flow direction; (2) a transitional recirculation zone between the inner and outer cells can capture flow leakage from the inner cell, minimizing the release of untreated contaminants; and (3) the size of the recirculation zone and residence times can be better controlled within the inner cell by changing the pumping rates. The system is applied at the Field Research Center in Oak Ridge, Tennessee, where experiments on microbial in situ reduction of uranium (VI) are under way.


Assuntos
Urânio/metabolismo , Poluentes Radioativos da Água/metabolismo , Purificação da Água/métodos , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Biodegradação Ambiental/efeitos dos fármacos , Etanol/farmacologia , Modelos Teóricos , Movimentos da Água , Abastecimento de Água
20.
J Contam Hydrol ; 83(1-2): 27-41, 2006 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-16337023

RESUMO

We analyze reactive transport during in-situ bioremediation in a nonuniform flow field, involving multiple extraction and injection wells, by the method of transfer functions. Gamma distributions are used as parametric models of the transfer functions. Apparent parameters of classical transport models may be estimated from those of the gamma distributions by matching temporal moments. We demonstrate the method by application to measured data taken at a field experiment on bioremediation conducted in a multiple-well system in Oak Ridge, TN. Breakthrough curves (BTCs) of a conservative tracer (bromide) and a reactive compound (ethanol) are measured at multi-level sampling (MLS) wells and in extraction wells. The BTCs of both compounds are jointly analyzed to estimate the first-order degradation rate of ethanol. To quantify the tracer loss, we compare the approaches of using a scaling factor and a first-order decay term. Results show that by including a scaling factor both gamma distributions and inverse-Gaussian distributions (transfer functions according to the advection-dispersion equation) are suitable to approximate the transfer functions and estimate the reactive rate coefficients for both MLS and extraction wells. However, using a first-order decay term for tracer loss fails to describe the BTCs at the extraction well, which is affected by the nonuniform distribution of travel paths.


Assuntos
Modelos Teóricos , Biodegradação Ambiental , Brometos/análise , Etanol/análise , Etanol/metabolismo , Movimentos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...