Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Adv Colloid Interface Sci ; 309: 102768, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36182694

RESUMO

Proteins are natural amphiphilic polymers that often have good emulsifying, gelling, and structure forming properties. Consequently, they can be used to assemble protein-based colloidal delivery systems for bioactive agents, such as nanoemulsions, protein nanoparticles, or microgels. However, the functional performance of some proteins is limited because of their poor water-solubility, a tendency to aggregate, and or low surface activity, which limits their application for this purpose. Therefore, physicochemical modification is often necessary to improve their technofunctional characteristics. High-intensity ultrasound (HIU) is a non-thermal processing method that has considerable potential for the modification of the structural, physicochemical, and functional properties of proteins. In this article, we review the impact of sonication on the properties of proteins, including their size, charge, surface hydrophobicity, flexibility, solubility, free sulfhydryl groups, and disulfide bond formation. In addition, the influence of sonication on the emulsifying, foaming, gelling, and encapsulation properties of proteins is reviewed. Previous studies show that high-intensity ultrasound treatments have a strong influence on the molecular characteristics of proteins (increasing their solubility, flexibility, and functionality), which improves their ability to form colloidal delivery systems.


Assuntos
Microgéis , Água/química , Solubilidade , Interações Hidrofóbicas e Hidrofílicas , Proteínas , Géis , Coloides , Dissulfetos
2.
Food Technol Biotechnol ; 53(1): 81-86, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27904335

RESUMO

In this study, in order to introduce natural antioxidative vegetable oil in food industry, the kolkhoung hull oil and kernel oil were extracted. To evaluate their antioxidant efficiency, gas chromatography analysis of the composition of kolkhoung hull and kernel oil fatty acids and high-performance liquid chromatography analysis of tocopherols were done. Also, the oxidative stability of the oil was considered based on the peroxide value and anisidine value during heating at 100, 110 and 120 °C. Gas chromatography analysis showed that oleic acid was the major fatty acid of both types of oil (hull and kernel) and based on a low content of saturated fatty acids, high content of monounsaturated fatty acids, and the ratio of ω-6 and ω-3 polyunsaturated fatty acids, they were nutritionally well--balanced. Moreover, both hull and kernel oil showed high oxidative stability during heating, which can be attributed to high content of tocotrienols. Based on the results, kolkhoung hull oil acted slightly better than its kernel oil. However, both of them can be added to oxidation-sensitive oils to improve their shelf life.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...