Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Genome ; 58(2): 71-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26053312

RESUMO

We aim to improve diversity of domesticated wheat by transferring genetic variation for important target traits from related wild and cultivated grass species. The present study describes the development of F1 hybrids between wheat and related species from the genera Aegilops, Secale, Thinopyrum, and Triticum and production of new amphidiploids. Amphidiploid lines were produced from 20 different distant relatives. Both colchicine and caffeine were successfully used to double the chromosome numbers. The genomic constitution of the newly formed amphidiploids derived from seven distant relatives was determined using genomic in situ hybridization (GISH). Altogether, 42 different plants were analysed, 19 using multicolour GISH separating the chromosomes from the A, B, and D genomes of wheat, as well as the distant relative, and 23 using single colour GISH. Restructuring of the allopolyploid genome, both chromosome losses and aneuploidy, was detected in all the genomes contained by the amphidiploids. From the observed chromosome numbers there is an indication that in amphidiploids the B genome of wheat suffers chromosome losses less frequently than the other wheat genomes. Phenotyping to realize the full potential of the wheat-related grass germplasm is underway, linking the analyzed genotypes to agronomically important target traits.


Assuntos
Variação Genética , Hibridização Genética , Triticum/genética , Cromossomos de Plantas , Diploide , Genoma de Planta , Hibridização In Situ , Cariótipo , Poaceae/classificação , Poaceae/genética , Secale/genética
2.
Theor Appl Genet ; 128(6): 1049-59, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25748115

RESUMO

KEY MESSAGE: The 'breaker' element ( GcB ) of the gametocidal locus derived from Aegilops sharonensis has been mapped to a region proximal to a block of sub-telomeric heterochromatin on chromosome 4S (sh) L. The production of alien chromosome addition lines allows the transfer of useful genetic variation into elite wheat varieties from related wild species. However, some wild relatives of wheat, particularly those within the Sitopsis section of the genus Aegilops, possess chromosomes that are transmitted preferentially to the offspring when addition lines are generated. Species within the Sitopsis group possess the S genome, and among these species, Aegilops sharonensis (2n = 14, S(sh)S(sh)) carries the S(sh) genome which is closely related to the D genome of hexaploid wheat. Some S genome chromosomes carry gametocidal loci, which induce severe chromosome breakage in gametes lacking the gametocidal chromosome, and hence, result in gamete abortion. The preferential transmission of gametocidal loci could be exploited in wheat breeding, because linking gametocidal loci with important agronomic traits in elite wheat varieties would ensure retention of these traits through successive generations. In this study, we have mapped the breaker element of the gametocidal locus derived from Ae. sharonensis to the region immediately proximal to a block of sub-telomeric heterochromatin on the long arm of chromosome 4S(sh).


Assuntos
Quebra Cromossômica , Cromossomos de Plantas/genética , Heterocromatina/genética , Poaceae/genética , Mapeamento Cromossômico , Marcadores Genéticos , Genoma de Planta , Genótipo , Fenótipo , Polimorfismo de Nucleotídeo Único , Translocação Genética , Triticum/genética
3.
Front Plant Sci ; 3: 48, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22639649

RESUMO

We previously showed that the N6-methyladenosine (m(6)A) mRNA methylase is essential during Arabidopsis thaliana embryonic development. We also demonstrated that this modification is present at varying levels in all mature tissues. However, the requirement for the m(6)A in the mature plant was not tested. Here we show that a 90% reduction in m(6)A levels during later growth stages gives rise to plants with altered growth patterns and reduced apical dominance. The flowers of these plants commonly show defects in their floral organ number, size, and identity. The global analysis of gene expression from reduced m(6)A plants show that a significant number of down-regulated genes are involved in transport, or targeted transport, and most of the up-regulated genes are involved in stress and stimulus response processes. An analysis of m(6)A distribution in fragmented mRNA suggests that the m(6)A is predominantly positioned toward the 3' end of transcripts in a region 100-150 bp before the poly(A) tail. In addition to the analysis of the phenotypic changes in the low methylation Arabidopsis plants we will review the latest advances in the field of mRNA internal methylation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...