Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Can J Infect Dis Med Microbiol ; 2024: 7209380, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38808260

RESUMO

Purpose: Since February 2020, the world has been overwhelmed by the SARS-CoV-2 outbreak, and several patients suffered interstitial pneumonia and respiratory failure requiring mechanical ventilation, threatening the capability of healthcare systems to handle this amount of critical cases. Intravenous immunoglobulins (IVIG) possess potential immunomodulatory properties beneficial for COVID-19 patients, yet evidence supporting IVIG as adjunctive therapy remains sparse. This study evaluated the outcomes of adjunctive IVIG with the standard of care (SoC) in moderate-to-severe COVID-19 patients. Methods: This randomized study included 59 moderate-to-severe COVID-19 patients with known comorbidities. One arm (n = 33) received high-dose IVIG (400 mg/kg/day) within 48 hours for five days alongside SoC, while the other arm (n = 26) received SoC, comprising steroids, enoxaparin, and remdesivir. The primary endpoint was clinical improvement, as measured by the National Early Warning Score 2 (NEWS2) and discharged/death proportions. Secondary outcomes included IVIG safety, hospitalization duration, changes in oxygen saturation, inflammatory markers, IgG titer, CTSS (CT severity score), and radiological findings. Results: There was an improvement in the NEWS2 at the end of treatment in the IVIG arm (5.67 vs. 5.96). A significant absolute effect improvement (Day 1 vs. Day 9) was seen in serum LDH, D-dimer, hs-CRP, IL-6, CTSS, procalcitonin, respiratory rate, and chest radiographic findings. SARS-CoV-2 IgG titer increased significantly in the IVIG arm. There was a statistically significant reduction in mortality in the IVIG group (5 vs. 10). Conclusion: IVIG was a safe and effective adjunctive therapy to SoC treatment in moderate-to-severe COVID-19 patients needing ventilatory support. Furthermore, studies are required to validate our findings. This trial is registered with CTRI/2021/05/033622.

2.
Biol Trace Elem Res ; 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38393487

RESUMO

Tannic acid (TA) is a metal chelating polyphenol that plays a crucial role in metal detoxification, but its modulatory role in co-exposure of these heavy metals' exposure needs to be explored. Cadmium (Cd) and nickel (Ni) are inorganic hazardous chemicals in the environment. Humans are prone to be exposed to the co-exposure of Cd and Ni, but the toxicological interactions of these metals are poorly defined. Present study was undertaken to study the preventive role of TA in Cd-Ni co-exposure-evoked hepato-renal toxicity in BALB/c mice. In the current investigation, increased oxidative stress in metal intoxicated groups was confirmed by elevated peroxidation of the lipids and significant lowering of endogenous antioxidant enzymes. Altered hepato-renal serum markers, DNA fragmentation, and histological alterations were also detected in the metal-treated groups. Present study revealed that Cd is a stronger toxicant than Ni and when co-exposure was administered, additive, sub-additive, and detrimental effects were observed. Prophylactic treatment with TA significantly reinstated the levels of lipid peroxidation (LPO), non-enzymatic, and enzymatic antioxidants. Moreover, it also restored the serum biomarker levels, DNA damage, and histoarchitecture of the given tissues. TA due to its metal chelating and anti-oxidative properties exhibited cyto- and genoprotective potential against Cd-Ni co-exposure-induced hepatic and renal injury.

3.
Mol Neurobiol ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38048031

RESUMO

Embryonic valproic acid (VPA) has been considered a potential risk factor for autism. Majority of studies indicated that targeting autism-associated alterations in VPA-induced autistic model could be promising in defining and designing therapeutics for autism. Numerous investigations in this field investigated the role of canonical Wnt signaling cascade in regulating the pathophysiology of autism. The impaired blood-brain barrier (BBB) permeability and mitochondrial dysfunction are some key implied features of the autistic brain. So, the current study was conducted to target canonical Wnt signaling pathway with a natural polyphenolic modulator cum antioxidant namely fisetin. A single dose of intraperitoneal VPA sodium salt (400 mg/kg) at gestational day 12.5 induced developmental delays, social behaviour impairments (tube dominance test), and anxiety-like behaviour (sucrose preference test) similar to autism. VPA induced mitochondrial damage and over-activated the canonical Wnt signaling which further increased the blood-brain barrier (BBB) disruption, apoptosis, and neuronal damage. Our findings revealed that oral administration of 10 mg/kg gestational fisetin (GD 13-till parturition) improved social and anxiety-like behaviour by modulating the ROS-regulated mitochondrial-canonical Wnt signaling. Moreover, fisetin controls BBB permeability, apoptosis, and neuronal damage in autism model proving its neuroprotective efficacy. Collectively, our findings revealed that fisetin-evoked modulation of the Wnt signaling cascade successfully relieved the associated symptoms of autism along with developmental delays in the model and indicates its potential as a bioceutical against autism.

4.
J Mol Neurosci ; 73(6): 403-422, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37261645

RESUMO

Autism is a neurodevelopmental condition, and it's associated pathophysiology, viz., oxidative stress and altered cellular homeostasis, has been extensively intertwined with behavioral impairments. Therefore, targeting oxidative stress and redox cellular homeostasis could be beneficial in relieving autistic-like symptoms. For this purpose, we examined a library of nutraceutical compounds that led us to a bioflavonoid fisetin. Autism-like neurobehavior was induced by subjecting the pregnant rodents to valproic acid at the time of neural tube closure (GD12.5). In this novel study, fisetin was evaluated for its neuroprotective potential at gestational (GD13 until delivery) and post-weaning developmental windows (PND 23-32) in VPA-induced rodent model of autism. Developmental VPA exposure increased intracellular ROS production, oxidative stress, altered AChE and ATPases in brain regions, and induced autistic-like behavioral impairments (social, repetitive, stereotyped, and sensorimotor). The present findings suggested that gestational and post-weaning fisetin treatment significantly improved the behavioral impairments by attenuating elevated oxidative stress, ROS, lipid peroxidation, and re-establishing redox homeostasis. Also, it effectively reinstated the reduced levels of endogenous antioxidants, glutathione, AChE, and ATPases by its antioxidant potential. Therefore, fisetin with its properties could be used as a potential therapeutic agent in overcoming the symptoms associated with autism.


Assuntos
Transtorno Autístico , Efeitos Tardios da Exposição Pré-Natal , Gravidez , Ratos , Animais , Feminino , Humanos , Ácido Valproico/uso terapêutico , Transtorno Autístico/induzido quimicamente , Transtorno Autístico/tratamento farmacológico , Espécies Reativas de Oxigênio , Ratos Wistar , Oxirredução , Modelos Animais de Doenças
5.
J Mol Neurosci ; 72(6): 1259-1273, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35635674

RESUMO

Valproic acid (VPA) induced rodent model of autism is a widely accepted and extensively used rodent model to investigate the pharmacotherapy against autism. But, to date, its validation, suitability, and applicability as a well defining autistic model are still questionable. Previous research efforts highlighted that this model shows various core defining features of autism and related pathways, hence it is very necessary to explore its authenticity as a well-suited model for autism. Therefore, in this review, we summarize the preclinical and neurobiological relevant validated features, involved etiological mechanism, biological markers, treatment responses, drawbacks, current approaches, and future perspectives of VPA-induced model of autism. This review would help in deciphering the validation of the VPA-induced autistic model and its suitability as an experimental model of autism. A thorough investigation of behavioral, molecular, and neurobiological processes in animal models of autism would help in investigating the exact causation and effective treatment for autism.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Efeitos Tardios da Exposição Pré-Natal , Animais , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/metabolismo , Transtorno Autístico/induzido quimicamente , Transtorno Autístico/tratamento farmacológico , Comportamento Animal , Modelos Animais de Doenças , Feminino , Humanos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Roedores , Ácido Valproico/uso terapêutico , Ácido Valproico/toxicidade
6.
Pestic Biochem Physiol ; 179: 104977, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34802527

RESUMO

Chlorpyrifos (0,0-diethyl 0-(3,5,6-trichloro-2-pyridinyl)-phosphorothioate; (CPF)) is a widely used lipophilic organophosphorus insecticide that primarily manifests into central and peripheral nervous system toxicity. However, it is poorly investigated as a developmental neurotoxicant and thus remains less explored for pharmacological interventions as well. Berberine (BBR) is a benzylisoquinoline alkaloid, primarily found in the plants of Berberidaceae family, and is used for the synthesis of several bioactive derivatives. The goal of this study was to evaluate the CPF-induced neuronal damage through lactational route and analyze the neuroprotective efficacy of berberine (BBR), a potent antioxidant compound in the F1 generation. The environmentally relevant dose of CPF (3 mg/kg b.wt.) was administered via gavage to pregnant dams from postnatal day 1 to day 20 (PND 1-20). BBR (10 mg/kg b.wt.) was administered concurrently with CPF for the same duration as a co-treatment. Levels of reactive oxygen species, lipid peroxidation, membrane bound ATPases (Na+K+ATPase, Ca2+ATPase, and Mg2+ATPase), DNA damage, histomorphological alterations, cellular apoptosis were increased, and activities of glutathione reductase, endogenous antioxidant enzymes (SOD, CAT, GST, and GR) were decreased in cerebellum and cerebrum regions of CPF exposed pups. CPF triggered neuronal apoptosis by upregulating Bax and caspase-3 and downregulating Bcl-2. Co-treatment of BBR significantly attenuated these effects of CPF signifying oxidative stress mediated chlorpyrifos induced neuronal apoptosis. Berberine treatment ameliorated the CPF-induced downregulation of Bcl-2, Bax translocation, and up-regulation of caspase-3 in F1 pups. Therefore, BBR owing to its multiple pharmacological properties can be further explored for its therapeutic potential as an alternative neuroprotective agent against lactational exposure of chlorpyrifos-induced developmental neurotoxicity.


Assuntos
Berberina , Clorpirifos , Inseticidas , Animais , Berberina/toxicidade , Clorpirifos/toxicidade , Inseticidas/toxicidade , Compostos Organofosforados , Estresse Oxidativo , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...