Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomech ; 134: 111012, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35219146

RESUMO

Muscle activity during gait can be described by a small set of synergies, weighted groups of muscles, that are theorized to reflect underlying neural control. For people with neurologic injuries, like cerebral palsy or stroke, even fewer synergies are required to explain muscle activity during gait. This reduction in synergies is thought to reflect altered control and is associated with impairment severity and treatment outcomes. Individuals with neurologic injuries also develop secondary musculoskeletal impairments, like weakness or contracture, that can impact gait. Yet, the combined impacts of altered control and musculoskeletal impairments on gait remains unclear. In this study, we use a two-dimensional musculoskeletal model constrained to synergy control to simulate unimpaired gait. We vary the number of synergies, while simulating muscle weakness and contracture to examine how altered control impacts sensitivity to musculoskeletal impairment while tracking unimpaired gait. Results demonstrate that reducing the number of synergies increases sensitivity to weakness and contracture for specific muscle groups. For example, simulations using five-synergy control tolerated 40% and 51% more knee extensor weakness than those using four- or three-synergy control, respectively. Furthermore, when constrained to four- or three-synergy control, the model was increasingly sensitive to contracture and weakness of proximal muscles, such as the hamstring and hip flexors. Contrastingly, neither the amount of generalized nor plantarflexor weakness tolerated was affected by the number of synergies. These findings highlight the interactions between altered control and musculoskeletal impairments, emphasizing the importance of measuring and incorporating both in future simulation and experimental studies.


Assuntos
Paralisia Cerebral , Contratura , Transtornos Neurológicos da Marcha , Contratura/complicações , Marcha/fisiologia , Transtornos Neurológicos da Marcha/etiologia , Humanos , Músculo Esquelético/fisiologia
3.
J Biomech ; 90: 84-91, 2019 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-31101431

RESUMO

Recent studies have postulated that the human motor control system recruits groups of muscles through low-dimensional motor commands, or muscle synergies. This scheme simplifies the neural control problem associated with the high-dimensional structure of the neuromuscular system. Several lines of evidence have suggested that neurological injuries, such as stroke or cerebral palsy, may reduce the dimensions that are available to the motor control system, and these altered dimensions or synergies are thought to contribute to impaired walking patterns. However, no study has investigated whether impaired low-dimensional control spaces necessarily lead to impaired walking patterns. In this study, using a two-dimensional model of walking, we developed a synergy-based control framework that can simulate the dynamics of walking. The simulation analysis showed that a synergy-based control scheme can produce well-coordinated movements of walking matching unimpaired gait. However, when the dimensions available to the controller were reduced, the simplified emergent pattern deviated from unimpaired gait. A system with two synergies, similar to those seen after neurological injury, could not produce an unimpaired walking pattern. These findings provide further evidence that altered muscle synergies can contribute to impaired gait patterns and may need to be directly addressed to improve gait after neurological injury.


Assuntos
Modelos Biológicos , Músculo Esquelético/fisiologia , Caminhada/fisiologia , Transtornos Neurológicos da Marcha/fisiopatologia , Humanos
4.
IEEE Trans Neural Syst Rehabil Eng ; 26(10): 2033-2043, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29994402

RESUMO

Functional electrical stimulation (FES) can be used as a neuroprosthesis in which muscles are stimulated by electrical pulses to compensate for the loss of voluntary movement control. Modulating the stimulation intensities to reliably generate movements is a challenging control problem. This paper introduces a feedback controller for a multi-muscle FES system to control hand movements in a 2-D (table-top) task space. This feedback controller is based on a recent human motor control model, which uses muscle synergies to simplify its calculations and improve the performance. This synergy-based controller employs direct relations between the muscle synergies and the produced hand force, therefore allowing for the real-time calculation of six muscle stimulation levels required to reach an arbitrary target. The experimental results show that this control scheme can perform arbitrary point-to-point reaching tasks in the 2-D task space in real time, with an average of ~2 cm final hand position error from the specified targets. The success of this prototype demonstrates the potential of the proposed method for the feedback control of functional tasks with FES.


Assuntos
Braço/fisiologia , Estimulação Elétrica/instrumentação , Estimulação Elétrica/métodos , Retroalimentação , Algoritmos , Fenômenos Biomecânicos , Desenho de Equipamento , Mãos/fisiologia , Voluntários Saudáveis , Humanos , Músculo Esquelético/fisiologia
5.
J Appl Biomech ; 33(4): 294-299, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28084864

RESUMO

Paralympic wheelchair curling is an adapted version of Olympic curling played by individuals with spinal cord injuries, cerebral palsy, multiple sclerosis, and lower extremity amputations. To the best of the authors' knowledge, there has been no experimental or computational research published regarding the biomechanics of wheelchair curling. Accordingly, the objective of the present research was to quantify the angular joint kinematics and dynamics of a Paralympic wheelchair curler throughout the delivery. The angular joint kinematics of the upper extremity were experimentally measured using an inertial measurement unit system; the translational kinematics of the curling stone were additionally evaluated with optical motion capture. The experimental kinematics were mathematically optimized to satisfy the kinematic constraints of a subject-specific multibody biomechanical model. The optimized kinematics were subsequently used to compute the resultant joint moments via inverse dynamics analysis. The main biomechanical demands throughout the delivery (ie, in terms of both kinematic and dynamic variables) were about the hip and shoulder joints, followed sequentially by the elbow and wrist. The implications of these findings are discussed in relation to wheelchair curling delivery technique, musculoskeletal modeling, and forward dynamic simulations.


Assuntos
Fenômenos Biomecânicos/fisiologia , Comportamento Competitivo/fisiologia , Pessoas com Deficiência , Articulações/fisiopatologia , Esportes/fisiologia , Extremidade Superior/fisiopatologia , Cadeiras de Rodas , Adulto , Humanos , Masculino
6.
Front Comput Neurosci ; 10: 143, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28133449

RESUMO

This article investigates the application of optimal feedback control to trajectory planning in voluntary human arm movements. A nonlinear model predictive controller (NMPC) with a finite prediction horizon was used as the optimal feedback controller to predict the hand trajectory planning and execution of planar reaching tasks. The NMPC is completely predictive, and motion tracking or electromyography data are not required to obtain the limb trajectories. To present this concept, a two degree of freedom musculoskeletal planar arm model actuated by three pairs of antagonist muscles was used to simulate the human arm dynamics. This study is based on the assumption that the nervous system minimizes the muscular effort during goal-directed movements. The effects of prediction horizon length on the trajectory, velocity profile, and muscle activities of a reaching task are presented. The NMPC predictions of the hand trajectory to reach fixed and moving targets are in good agreement with the trajectories found by dynamic optimization and those from experiments. However, the hand velocity and muscle activations predicted by NMPC did not agree as well with experiments or with those found from dynamic optimization.

7.
Front Comput Neurosci ; 9: 121, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26500530

RESUMO

This paper presents a new model-based method to define muscle synergies. Unlike the conventional factorization approach, which extracts synergies from electromyographic data, the proposed method employs a biomechanical model and formally defines the synergies as the solution of an optimal control problem. As a result, the number of required synergies is directly related to the dimensions of the operational space. The estimated synergies are posture-dependent, which correlate well with the results of standard factorization methods. Two examples are used to showcase this method: a two-dimensional forearm model, and a three-dimensional driver arm model. It has been shown here that the synergies need to be task-specific (i.e., they are defined for the specific operational spaces: the elbow angle and the steering wheel angle in the two systems). This functional definition of synergies results in a low-dimensional control space, in which every force in the operational space is accurately created by a unique combination of synergies. As such, there is no need for extra criteria (e.g., minimizing effort) in the process of motion control. This approach is motivated by the need for fast and bio-plausible feedback control of musculoskeletal systems, and can have important implications in engineering, motor control, and biomechanics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...