Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7356, 2024 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548906

RESUMO

Packaging is very important to maintain the quality of food and prevent the growth of microbes. Therefore, the use of food packaging with antimicrobial properties protects the food from the growth of microorganisms. In this study, antibacterial nanocomposite films of polyvinyl alcohol/starch/chitosan (PVA/ST/CS) together with nickel oxide-copper oxide nanoparticles (NiO-CuONPs) are prepared for food packaging. NiO-CuONPs were synthesized by the co-precipitation method, and structural characterization of nanoparticles (NPs) was carried out by XRD, FTIR, and SEM techniques. Composites of PVA/ST/CS, containing different percentages of NPs, were prepared by casting and characterized by FTIR and FESEM. The mechanical properties, diffusion barrier, and thermal stability were determined. The nanoparticles have a round structure with an average size of 6.7 ± 1.2 nm. The cross-section of PVA/ST/CS film is dense, uniform, and without cracks. In the mechanical tests, the addition of NPs up to 1% improved the mechanical properties (TS = 31.94 MPa), while 2% of NPs lowered TS to 14.76 MPa. The fibroblast cells toxicity and the films antibacterial activity were also examined. The films displayed stronger antibacterial effects against Gram-positive bacteria (Staphylococcus aureus) compared to Gram-negative bacteria (Escherichia coli). Furthermore, these films have no toxicity to fibroblast cells and the survival rate of these cells in contact with the films is more than 84%. Therefore, this film is recommended for food packaging due to its excellent mechanical and barrier properties, good antibacterial activity, and non-toxicity.


Assuntos
Quitosana , Nanopartículas , Quitosana/farmacologia , Quitosana/química , Embalagem de Alimentos/métodos , Álcool de Polivinil/química , Amido , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas/química
2.
Proc Natl Acad Sci U S A ; 121(12): e2315940121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38489384

RESUMO

Water microdroplets (7 to 11 µm average diameter, depending on flow rate) are sprayed in a closed chamber at ambient temperature, whose relative humidity (RH) is controlled. The resulting concentration of ROS (reactive oxygen species) formed in the microdroplets, measured by the amount of hydrogen peroxide (H2O2), is determined by nuclear magnetic resonance (NMR) and by spectrofluorimetric assays after the droplets are collected. The results are found to agree closely with one another. In addition, hydrated hydroxyl radical cations (•OH-H3O+) are recorded from the droplets using mass spectrometry and superoxide radical anions (•O2-) and hydroxyl radicals (•OH) by electron paramagnetic resonance spectroscopy. As the RH varies from 15 to 95%, the concentration of H2O2 shows a marked rise by a factor of about 3.5 in going from 15 to 50%, then levels off. By replacing the H2O of the sprayed water with deuterium oxide (D2O) but keeping the gas surrounding droplets with H2O, mass spectrometric analysis of the hydrated hydroxyl radical cations demonstrates that the water in the air plays a dominant role in producing H2O2 and other ROS, which accounts for the variation with RH. As RH increases, the droplet evaporation rate decreases. These two facts help us understand why viruses in droplets both survive better at low RH values, as found in indoor air in the wintertime, and are disinfected more effectively at higher RH values, as found in indoor air in the summertime, thus explaining the recognized seasonality of airborne viral infections.

3.
Sci Rep ; 14(1): 519, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177381

RESUMO

Food packaging with antibacterial properties has attracted much attention recently. In this study, nickel oxide nanoparticles (NiONPs) were synthesized by co-precipitation and then gelatin/chitosan polymer films (GEL/CS) with different percentages of NiONPs, bio-nanocomposites, were prepared by casting. Morphology, crystal microstructure, molecular interactions and thermal stabilities of the NPs and the composite films were characterized by FESEM, XRD, FTIR and TGA, respectively. The bio-nanocomposite films exhibited excellent barrier, thermal and mechanical properties by addition of an optimized content of NPs. For example, the tensile strength (TS) of the GEL/CS film without NPs was 23.83 MPa and increased to 30.13 MPa by incorporation of 1% NPs. The antibacterial properties and toxicity of the films were investigated. These films show good antibacterial behavior against Gram-positive (Staphylococcus aureus) bacteria compared to Gram-negative (Escherichia coli) bacteria. Furthermore, the films were found to be non-toxic to fibroblast cells that came into contact with the films, with a survival rate of more than 88%. Therefore, these films can be applied for food packaging due to their excellent mechanical, barrier, and antibacterial properties.


Assuntos
Quitosana , Nanocompostos , Nanopartículas , Quitosana/química , Embalagem de Alimentos , Gelatina/química , Antibacterianos/farmacologia , Antibacterianos/química , Nanopartículas/química , Nanocompostos/química , Escherichia coli
4.
Nanomedicine ; 48: 102643, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36584739

RESUMO

Chemoradiotherapy with controlled-release nanocarriers such as sono-sensitive nanodroplets (NDs) can enhance the anticancer activity of chemotherapy medicines and reduces normal tissue side effects. In this study, folic acid-functionalized methotrexate-loaded perfluorohexane NDs with alginate shell (FA-MTX/PFH@alginate NDs) were synthesized, characterized, and their potential for ultrasound-guided chemoradiotherapy of breast cancer was investigated in vitro and in vivo. The cancer cell (4T1) viabilities and surviving fractions after NDs and ultrasound treatments were significantly decreased. However, this reduction was much more significant for ultrasound in combination with X-ray irradiation. The in vitro and in vivo results confirmed that MTX-loaded NDs are highly biocompatible and they have no significant hemolytic activity and organ toxicity. Furthermore, the in vivo results indicated that the FA-MTX/PFH@alginate NDs were accumulated selectively in the tumor region. In conclusion, FA-functionalized MTX/PFH@alginate NDs have a great theranostic performance for ultrasound-controlled drug delivery in combination with radiotherapy of breast cancer.


Assuntos
Neoplasias da Mama , Nanopartículas , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Metotrexato/farmacologia , Linhagem Celular Tumoral , Quimiorradioterapia , Alginatos , Ultrassonografia de Intervenção
5.
J Am Chem Soc ; 144(17): 7606-7609, 2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35451822

RESUMO

Ultrapure N2 gas was bubbled through water, and the humidified output containing undetectable concentrations of ozone filled a closed chamber in which 18 MΩ-cm water was sprayed through a silica capillary to form microdroplets. Analysis of the collected microdroplets by NMR spectroscopy showed the presence of hydrogen peroxide at a concentration level ranging from 0.3 to 1.5 µM depending on the flow conditions. This was confirmed using a spectrofluorometric assay. We suggest that this finding establishes that when sprayed to form microdroplets, water has the ability to produce hydrogen peroxide by itself. When the N2 gas is replaced by compressed air or O2 gas, the concentration of hydrogen peroxide is found to increase, indicating that gas-surface interactions with O2 in aqueous microdroplets promote the formation of hydrogen peroxide.


Assuntos
Peróxido de Hidrogênio , Ozônio , Peróxido de Hidrogênio/química , Espectroscopia de Ressonância Magnética , Água/química
6.
Bioelectrochemistry ; 140: 107807, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33845441

RESUMO

Regarding the cancer fatal consequences, early detection and progression monitoring are the most vital issues in patients' treatment and mortality reduction. Therefore, there is a great demand for fast, inexpensive, and selective detection methods. Herein, a graphene-based aptasensor was designed for sensitive human breast cancer cell detection. A reduced graphene oxide-chitosan-gold nanoparticles composite was used as a biocompatible substrate for the receptor stabilization. The significant function of the aptamer on this composite is due to the synergistic effects of the components in improving the properties of the composite, including increasing the electrical conductivity and effective surface area. After the aptasensor incubation in MCF-7 cancer cells, the cell membrane proteins interacted specifically with the three dimensional-structure of the AS1411 aptamer, resulting in the cell capture on the aptasensor. The aptasensor fabrication steps were investigated by cyclic voltammetry and electrochemical impedance spectroscopy. The higher cell concentrations concluded to the higher captured cells on the aptasensor which blocked the Ferro/Ferricyanide access to the sensor, causing increases in the charge transfer resistances. This aptasensor shows a linear relationship with the cell concentration logarithm, high selectivity, a wide linear range of 1 × 101-1 × 106 cells/mL, and a low detection limit of 4 cells/mL.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Técnicas Biossensoriais/métodos , Neoplasias da Mama/patologia , Quitosana/química , Ouro/química , Grafite/química , Nanopartículas Metálicas/química , Eletroquímica , Humanos , Limite de Detecção , Células MCF-7 , Oxirredução
7.
Talanta ; 228: 122245, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33773745

RESUMO

Dual-modal molecular imaging by combining two imaging techniques can provide complementary information for early cancer diagnosis and therapeutic monitoring. In the present manuscript, folic acid (FA)-functionalized gadolinium-loaded nanodroplets (NDs) are introduced as dual-modal ultrasound (US)/magnetic resonance (MR) imaging contrast agents. These phase-change contrast agents (PCCAs) with alginate (Alg) stabilizing shell and a liquid perfluorohexane (PFH) core were successfully synthesized via the nano-emulsion method and characterized. In this regard, mouse hepatocellular carcinoma (Hepa1-6) as target cancer cells and mouse fibroblast (L929) as control cells were used. The in vitro and in vivo cytotoxicity assessments indicated that Gd/PFH@Alg and Gd/PFH@Alg-FA nanodroplets are highly biocompatible. Gd-loaded NDs do not induce organ toxicity, and no significant hemolytic activity in human red blood cells is observed. Additionally, nanodroplets exhibited strong ultrasound signal intensities as well as T1-weighted MRI signal enhancement with a high relaxivity value of 6.40 mM-1 s-1, which is significantly higher than that of the clinical Gadovist contrast agent (r1 = 4.01 mM-1 s-1). Cellular uptake of Gd-NDs-FA by Hepa1-6 cancer cells was approximately 2.5-fold higher than that of Gd-NDs after 12 h incubation. Furthermore, in vivo results confirmed that the Gd-NDs-FA bound selectively to cancer cells and were accumulated in the tumor region. In conclusion, Gd/PFH@Alg-FA nanodroplets have great potential as US/MR dual-modal imaging nanoprobes for the early diagnosis of cancer.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas , Animais , Carcinoma Hepatocelular/diagnóstico por imagem , Meios de Contraste , Ácido Fólico , Gadolínio , Neoplasias Hepáticas/diagnóstico por imagem , Imageamento por Ressonância Magnética , Camundongos
8.
Eur J Pharm Sci ; 153: 105487, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32707173

RESUMO

In the present study, the effect of functionalized gold nanoclusters (AuNCs) with trastuzumab (Herceptin®) and/or folic acid (FA) as a single and dual-targeted radiosensitizers for the enhancement of megavoltage radiation therapy efficacy was investigated. SK-BR3 breast cancer cells as human epidermal growth factor 2 (HER2) and folate overexpressing cell line and the murine fibroblast (L929) as a control cell line were selected. The cellular uptake was followed using inductively coupled plasma optical emission spectrometry (ICP-OES) that showed AuNCs-FA-HER uptake by SK-BR3 cells was 3 times more than the non-targeted AuNCs after 12 h incubation. MTT and clonogenic assays revealed that the viability and surviving fraction of cancer cells were significantly inhibited by treating with all AuNCs under radiation compared to treating with radiation alone. However, these effects in the dual-targeted AuNCs group (AuNCs-FA-HER) was significantly greater than non-targeted and single-targeted AuNCs groups. Also, apoptosis was evaluated using an Annexin V-FITC/propidium iodide (PI) kit in flow cytometry. All AuNCs, in combination with 4 Gy of photon beam, induced more apoptosis. By fitting the survival fraction data on the linear-quadratic model, the sensitization enhancement factor (SER) of AuNCs, AuNCs-FA, AuNCs-HER, and AuNCs-FA-HER, were obtained 1.17, 1.32, 1.48 and 1.77, respectively. SER for AuNCs-FA-HER was significantly higher than that non-targeted and single-targeted AuNCs (p-value < 0.05) that can be attributed to more internalization in the cancer cells. It was concluded that functionalized AuNCs with both folic acid and Herceptin could represent a promising strategy for increased cellular internalization that improved radiation therapy efficiency in SK-BR3 breast cancer cells.


Assuntos
Neoplasias da Mama , Nanopartículas Metálicas , Animais , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Ácido Fólico , Ouro , Humanos , Camundongos , Trastuzumab/farmacologia
9.
Nanomedicine ; 21: 102060, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31336175

RESUMO

G-rich oligonucleotide, AS1411, has been shown to interact with nucleolin and to inhibit cancer cell proliferation and tumor growth. This antiproliferative action is increased when AS1411 is conjugated to different types of nanoparticles. However, the molecular mechanisms are not known. In this work, we show in several cell lines that optimized AS1411-conjugated gold nanoparticles (GNS-AS1411) inhibit nucleolin expression at the RNA and protein levels. We observed an alteration of the nucleolar structure with a decrease of ribosomal RNA accumulation comparable to what is observed upon nucleolin knock down. However, the expression of genes involved in cell cycle and the cell cycle blockage by GNS-AS1411 are not regulated in the same way as that in cells where nucleolin has been knocked down. These data suggest that the anti-proliferative activity of GNS-AS1411 is not the only consequence of nucleolin targeting and down-regulation.


Assuntos
Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Ouro , Nanopartículas Metálicas/química , Oligodesoxirribonucleotídeos , Fosfoproteínas/biossíntese , RNA Ribossômico/biossíntese , Proteínas de Ligação a RNA/biossíntese , Aptâmeros de Nucleotídeos , Linhagem Celular Tumoral , Ouro/química , Ouro/farmacologia , Humanos , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/farmacologia , Nucleolina
10.
Anal Chem ; 91(9): 6383-6390, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30987423

RESUMO

A sensitive prostate-specific antigen (PSA) detection method using a visual-readout closed bipolar electrode (BPE) system has been introduced by integration of hydrogen evolution reaction (HER) in cathodic pole and electrochemiluminescence (ECL) of luminol loaded within the MIL-53(Fe)-NH2 (L@MIL-53(Fe)-NH2) in the anodic pole. The cathode of the BPE was electrochemically synthesized by 3D porous copper foam, followed by decorating with nitrogen-doped graphene nanosheet and ruthenium nanoparticles. As an alternative, we employed carboxylate-modified magnetic nanoparticles (MNPs) for immobilization of the primary antibody (Ab1) and utilized the L@MIL-53(Fe)-NH2 conjugated to secondary antibody (Ab2) as a signaling probe and coreaction accelerator. After sandwiching the target PSA between Ab1 and Ab2, the MNP/Ab1-PSA-Ab2/L@MIL-53(Fe) were introduced to a gold anodic BPE. Finally, the resulting ECL of luminol and H2O2 at the anodic poles was monitored using a photomultiplier tube (PMT) or digital camera. The PMT and visual (camera)-based detections showed linear responses from 1 pg mL-1 to 300 ng mL-1 (limit of detection 0.2 pg mL-1) and 5 pg mL-1 to 200 ng mL-1 (limit of detection 0.1 pg mL-1), respectively. This strategy provides an effective method for high-performance bioanalysis and opens a new door toward the development of the highly sensitive and user-friendly device.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Luminescência , Medições Luminescentes , Antígeno Prostático Específico/análise , Anticorpos/química , Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/instrumentação , Hidrogênio/química , Medições Luminescentes/instrumentação , Luminol/química , Nanopartículas de Magnetita/química , Estruturas Metalorgânicas/química , Tamanho da Partícula , Porosidade , Propriedades de Superfície
11.
Eur J Pharm Sci ; 130: 225-233, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30711685

RESUMO

Gold nanoparticles (GNPs) radiosensitizing effect strongly depends on the tumor targeting efficacy. The aim of this study is to identify the most ideal targeting decoration for BSA-GNPs according to tumor targeting and biodistribution. Therefore, three well-known targeting agents (folic acid, glucose, and glutamine) were utilized for BSA-GNPs decoration. Glucose-BSA-GNPs, glutamine-BSA-GNPs, and folic acid-BSA-GNPs were synthesized and then, characterized by Fourier-transform infrared spectroscopy and UV-Spectrometry. Then, the GNPs were intravenously injected 10 mg/kg to 4T1 breast tumor-bearing mice to evaluate biodistribution and radiosensitizing effects. Folic acid and glutamine decorations could significantly increase tumor targeting efficacy of BSA-GNPs as 2.1 and 2.4 times increase of gold accumulation was detected in comparison with BSA-GNPs. They exhibited the highest radiosensitizing efficacy and caused about 33% decrease in tumors volume in comparison with BSA-GNPs after 6 Gy radiation therapy. All the GNPs were completely biocompatible. Although, glutamine-BSA-GNPs and folic acid-BSA-GNPs could significantly enhance the tumor targeting and radiosensitizing efficacy of BSA-GNPs, did not exhibit any significant advantage over each other. Therefore, glutamine and folic acid decoration of BSA-GNPs can significantly increase the tumor targeting and therapeutic efficacy as radiosensitizer.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/radioterapia , Sistemas de Liberação de Medicamentos/métodos , Ouro/administração & dosagem , Nanopartículas Metálicas/administração & dosagem , Radiossensibilizantes/administração & dosagem , Animais , Linhagem Celular Tumoral , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Resultado do Tratamento , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/fisiologia , Carga Tumoral/efeitos da radiação
12.
J Drug Target ; 27(3): 315-324, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30207745

RESUMO

In the present study, alive attenuated Salmonella typhi Ty21a was introduced as a vehicle for smart delivery of gold nanoparticles to the tumours' hypoxic regions. At the first step, the uptakes of gold nanoparticles with seven different decorations by S. typhi Ty21a was investigated using flow cytometry and inductively coupled plasma optical emission spectroscopy. The analyses demonstrated that folic acid functionalised gold nanoparticles (FA-GNPs) are the best candidates for producing the Golden Bacteria (GB). Subsequently, the GB and FA-GNPs efficacies for tumour targeting were investigated after intravenous injection to CT-26 tumour-bearing mice. The GB exhibited more GNPs delivery to the tumour in comparison with FA-GNPs. Moreover, GB injection causes more delivery of GNPs to the tumours' central regions in comparison with tumours' periphery. This trend is completely in reverse for FA-GNPs injected group. The ratios of peripheral to central regions' gold concentration of the tumours were 1.95 ± 0.13 and 0.61 ± 0.10 for FA-GNPs and GB groups, respectively. This observation demonstrates higher accumulation of gold nanoparticles in the centre of the tumour due to their active delivery by the S. typhi Ty21a to the deeps of tumours.


Assuntos
Neoplasias do Colo/patologia , Ouro/química , Nanopartículas Metálicas/administração & dosagem , Salmonella typhi/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Ácido Fólico/química , Injeções Intravenosas , Camundongos , Camundongos Endogâmicos BALB C
13.
Nanomedicine (Lond) ; 13(20): 2563-2578, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30334677

RESUMO

AIM: Herein, the AS1411 aptamer-targeted ultrasmall gold nanoclusters (GNCs) were assessed at different aspects as a radiosensitizer. MATERIALS & METHODS: AS1411 aptamer-conjugated gold nanoclusters (Apt-GNCs) efficacy was evaluated at cancer cells targeting, radiosensitizing effect, tumor targeting, and biocompatibility in breast tumor-bearing mice. RESULTS: Flow cytometry and fluorescence microscopy exhibited more cellular uptake for Apt-GNCs in comparison with GNCs. In addition, inductively coupled plasma optical emission spectrometry results demonstrated its effective tumor targeting as the tumors' gold content for GNCs and Apt-GNCs were 8.53 and 15.33 µg/g, respectively. Apt-GNCs significantly enhanced radiotherapy efficacy as mean tumors' volume decreased about 39% and 9 days increase in the mice survival was observed. Both GNCs and Apt-GNCs were biocompatible. CONCLUSION: The Apt-GNCs is a novel and efficient  radiosensitizer.


Assuntos
Neoplasias da Mama/radioterapia , Nanopartículas Metálicas/administração & dosagem , Oligodesoxirribonucleotídeos/administração & dosagem , Radiossensibilizantes/administração & dosagem , Animais , Aptâmeros de Nucleotídeos/administração & dosagem , Aptâmeros de Nucleotídeos/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sistemas de Liberação de Medicamentos , Feminino , Citometria de Fluxo , Humanos , Nanopartículas Metálicas/química , Camundongos , Oligodesoxirribonucleotídeos/química , Radiossensibilizantes/química
14.
J Chromatogr A ; 1564: 85-93, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-29903468

RESUMO

Aptamers, due to the inherently high selectivity towards target analytes, are promising candidate for surface modification of the nanoparticles. Therefore, aptamer-functionalized magnetic nanoparticles (AMNPs) was prepared and used to develop a magnetic solid-phase extraction procedure for clean-up of milk and dairy products samples before measuring the aflatoxin M1 (AFM1) contents by the high-performance liquid chromatography. The prepared sorbent was characterized by different instrumental methods such as FT-IR, FESEM, TEM, EDX and AGFM. The AMNPs was used in extraction and pre-concentration of ultratrace amounts AFM1 from local milk samples. The amount of sorbent, elution volume, extraction time, and salt addition were optimized. Based on the results, calibration plot is linear over the 0.3 to 1 ng·L-1 and 5 to 50 ng·L-1 AFM1 concentration ranges. The limits of detection of the developed method were obtained 0.2 ng·L-1 which is the smallest value that has been reported up to now. The results show that this new superior sorbent has a large potential to simplify the complex matrix of the samples and can used for detection, preconcentration and accurate determination of ultratrace amounts of the AFM1 from milk and dairy products.


Assuntos
Aflatoxina M1/análise , Aflatoxina M1/isolamento & purificação , Cromatografia Líquida de Alta Pressão , Análise de Alimentos/métodos , Nanopartículas de Magnetita/química , Leite/química , Animais , Extração em Fase Sólida , Espectroscopia de Infravermelho com Transformada de Fourier
15.
Biosens Bioelectron ; 100: 382-388, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-28950248

RESUMO

A sensitive electrochemiluminescence (ECL) aptasensor for aflatoxin M1 (AFM1) detection by a closed bipolar electrode (BPE) array has been introduced. The thiolated AFM1 aptamer was immobilized on gold nanoparticle-coated magnetic Fe3O4 nanoparticles (Apt-GMNPs). Luminol-functionalized silver nanoparticle-decorated graphene oxide (GO-L-AgNPs) participates in π-π interactions with the unpaired bases of the immobilized aptamer (Apt-GMNPs-GO-L-AgNPs). After the Apt-GMNPs-GO-L-AgNPs were introduced to a gold anodic BPE array, the individual electrodes were subjected to different concentrations of AFM1. Upon the interaction of AFM1 with the aptamers, the GO-L-AgNPs detach from the aptamer; the resulting ECL of luminol and H2O2 at the anodic poles is monitored using a photomultiplier tube (PMT) or smartphone, and the images are analyzed using ImageJ software. This process triggers thionine reduction at the cathodic poles. Under the optimal conditions obtained by a face-centered central composite design (FCCD), the PMT-based detection of the BPE-ECL aptasensor exhibit a linear response over a wide dynamic range from 5 to 150ngmL-1, with a detection limit of 0.01ngmL-1. Additionally, smartphone-based detection shows a linear relationship between the ECL image gray value and the logarithmic concentration of the AFM1 target over a range of 10-200ngmL-1, with a detection limit of 0.05ngmL-1. Furthermore, the BPE-ECL aptasensor was successfully used to detect AFM1 in milk complex media without any serious interferences with reliable reproducibility (average relative standard deviation (RSD = 2.3%)). This smartphone-based detection opens a new horizon for bioanalysis that does not require a trained technician to operate and is a promising technology for point-of-care testing.


Assuntos
Aflatoxina M1/análise , Aptâmeros de Nucleotídeos/química , Técnicas Biossensoriais/métodos , Substâncias Luminescentes/química , Luminol/química , Nanopartículas Metálicas/química , Prata/química , Animais , Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Desenho de Equipamento , Análise de Alimentos/instrumentação , Análise de Alimentos/métodos , Grafite/química , Limite de Detecção , Medições Luminescentes/instrumentação , Medições Luminescentes/métodos , Leite/química , Óxidos/química , Reprodutibilidade dos Testes
16.
Bioelectrochemistry ; 117: 83-88, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28645004

RESUMO

In the present study, a nanoporous gold platform was applied for the amplified detection of Hepatitis B virus (HBV) by an electrochemical DNA biosensor. Ferrocene as a redox reporter was covalently attached to the DNA probe and its electrochemical signal was recorded as the biosensor response. For real samples, DNA was firstly extracted from blood of patients and then amplified by polymerase chain reaction (PCR) for 5cycles. Sensitivity of this biosensor was enhanced by using nanoporous gold electrode, therefore this sensor can discriminate the genome of HBV in real sample with low PCR cycles. By this strategy and signal amplification using nanoporous platform and covalently attached electroactive label, the biosensor can distinguish between healthy and HBV patients with limited PCR cycles. Moreover, the errors of PCR with large cycles can be disregarded. A linear dynamic range of 0.4 to 10nmol of mutant DNA was achieved, with reliable reproducibility (RSD) 8.9%.


Assuntos
Técnicas Biossensoriais/métodos , DNA Viral/análise , Ouro/química , Vírus da Hepatite B/isolamento & purificação , Nanoporos , Sequência de Bases , DNA Viral/genética , Eletroquímica , Eletrodos , Compostos Ferrosos/química , Vírus da Hepatite B/genética , Metalocenos , Mutação , Reação em Cadeia da Polimerase , Propriedades de Superfície
17.
Bioelectrochemistry ; 114: 24-32, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27992855

RESUMO

The increasing demands for early, accurate and ultrasensitive diagnosis of cancers demonstrate the importance of the development of new amplification strategies or diagnostic technologies. In the present study, an aptamer-based electrochemical biosensor for ultrasensitive and selective detection of leukemia cancer cells has been introduced. The thiolated sgc8c aptamer was immobilized on gold nanoparticles-coated magnetic Fe3O4 nanoparticles (Apt-GMNPs). Ethidium bromide (EB), intercalated into the stem of the aptamer hairpin, provides the read-out signal for the quantification of the leukemia cancer cells. After introduction of the leukemia cancer cells onto the Apt-GMNPs, the hairpin structure of the aptamer is disrupted and the intercalator molecules are released, resulting in a decrease of the electrochemical signal. The immobilization of nitrogen-doped graphene nanosheets on the electrode surface provides an excellent platform for amplifying the read-out signal. Under optimal conditions, the aptasensor exhibits a linear response over a wide dynamic range of leukemia cancer cells from 10 to 1×106cellmL-1. The present protocol provides a highly sensitive, selective, simple, and robust method for early stage detection of leukemia cancer. Furthermore, the fabricated aptasensor was successfully used for the detection of leukemia cancer cells in complex media such as human blood plasma, without any serious interference.


Assuntos
Aptâmeros de Nucleotídeos/metabolismo , Técnicas Biossensoriais/métodos , Ouro/química , Grafite/química , Leucemia/patologia , Nanopartículas de Magnetita/química , Nitrogênio/química , Aptâmeros de Nucleotídeos/genética , Sequência de Bases , Técnicas Biossensoriais/instrumentação , Linhagem Celular Tumoral , Eletroquímica , Eletrodos , Humanos , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/química , Fatores de Tempo
18.
J Med Signals Sens ; 6(4): 243-247, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28028501

RESUMO

Early detection of breast cancer is the most effective way to improve the survival rate in women. Magnetic resonance imaging (MRI) offers high spatial resolution and good anatomic details, and its lower sensitivity can be improved by using targeted molecular imaging. In this study, AS1411 aptamer was conjugated to Fe3O4@Au nanoparticles for specific targeting of mouse mammary carcinoma (4T1) cells that overexpress nucleolin. In vitro cytotoxicity of aptamer-conjugated nanoparticles was assessed on 4T1 and HFFF-PI6 (control) cells. The ability of the synthesized nanoprobe to target specifically the nucleolin overexpressed cells was assessed with the MRI technique. Results show that the synthesized nanoprobe produced strongly darkened T2-weighted magnetic resonance (MR) images with 4T1 cells, whereas the MR images of HFFF-PI6 cells incubated with the nanoprobe are brighter, showing small changes compared to water. The results demonstrate that in a Fe concentration of 45 µg/mL, the nanoprobe reduced by 90% MR image intensity in 4T1 cells compared with the 27% reduction in HFFF-PI6 cells. Analysis of MR signal intensity showed statistically significant signal intensity difference between 4T1 and HFFF-PI6 cells treated with the nanoprobe. MRI experiments demonstrate the high potential of the synthesized nanoprobe as a specific MRI contrast agent for detection of nucleolin-expressing breast cancer cells.

19.
Anal Chem ; 87(16): 8123-31, 2015 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-26176414

RESUMO

The development of simple, inexpensive, hand-held, user-friendly biosensor for high throughput and multiplexed genotyping of various single nucleotide polymorphisms (SNPs) in a single run experiment by a nonspecialist user is the main challenge in the analysis of DNA. Visualizing the signal and possibility to monitor SNPs by a digital camera opens a new horizon for the routine applications. In the present manuscript, a novel wireless electrochemiluminescence (ECL) DNA array is introduced for the visualized genotyping of different SNPs on the basis of ECL of luminol/hydrogen peroxide system on a bipolar electrode (BPE) array platform. After modification of anodic poles of the array with the DNA probe and its hybridization with the targets, genotyping of various SNPs is carried out by exposing the array to different monobase modified luminol-platinum nanoparticles (M-L-PtNPs). Upon the hybridization of M-L-PtNPs to mismatch sites, the ECL of luminol is followed using a photomultiplier tube (PMT) or digital camera and the images are analyzed by ImageJ software. This biosensor can detect even thermodynamically stable SNP (G-T mismatches) in the range of 2-600 pM. Also, by combining the advantages of BPE and the high visual sensitivity of ECL, it could be easily expected to achieve sensitive screening of different SNPs. The present biosensor demonstrates the capability for the discrimination between PCR products of normal, heterozygous, and homozygous beta thalassemia genetic disorders.


Assuntos
Técnicas Eletroquímicas , Técnicas de Genotipagem/instrumentação , Técnicas de Genotipagem/métodos , Polimorfismo de Nucleotídeo Único , Eletrodos , Genótipo , Medições Luminescentes , Luminol/química , Nanopartículas Metálicas/química , Platina/química , Tecnologia sem Fio
20.
Analyst ; 139(20): 5192-9, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25118340

RESUMO

In the present manuscript, a strategy to prompt the sensitivity of a biosensor based on the dual amplification of signal by applying a nanoporous gold electrode (NPGE) as a support platform and soluble graphene oxide (GO) as an indicator has been developed. By increasing the surface area of the biosensing platform and because of unique GO/ss-DNA interactions, the sensitivity for the detection of SNPs is enhanced. In the presence of SNPs, because of less effective hybridization of mutant targets compared to complementary targets, further GO could adsorb on mutant targets-modified NPGE viaπ-π interactions, causing a large increase in the charge transfer resistance (Rct) of the electrode. This protocol provides a cost-effective and fast method for the discrimination of different SNPs. Furthermore, this biosensor can detect thermodynamically stable SNP (G-T mismatches) in the range of 15-1600 pM. The present strategy is a label-free and sensitive protocol and does not require sophisticated fabrication.


Assuntos
DNA/análise , Técnicas Eletroquímicas , Técnicas Genéticas , Grafite/química , Nanoporos , Polimorfismo de Nucleotídeo Único , Técnicas Biossensoriais , DNA de Cadeia Simples/química , DNA de Cadeia Simples/metabolismo , Eletrodos , Ouro/química , Concentração de Íons de Hidrogênio , Hibridização de Ácido Nucleico , Óxidos/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...