Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 155: 543-550, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32240735

RESUMO

The α-synuclein (αSN) amyloid fibrillization process is known to be a crucial phenomenon associated with neuronal loss in various neurodegenerative diseases, most famously Parkinson's disease. The process involves different aggregated species and ultimately leads to formation of ß-sheet rich fibrillar structures. Despite the essential role of αSN aggregation in the pathoetiology of various neurological disorders, the characteristics of various assemblies are not fully understood. Here, we established a fluorescence-based model for studying the end-parts of αSN to decipher the structural aspects of aggregates during the fibrillization. Our model proved highly sensitive to the events at the early stage of the fibrillization process, which are hardly detectable with routine techniques. Combining fluorescent and PAGE analysis, we found different oligomeric aggregates in the nucleation phase of fibrillization with different sensitivity to SDS and different structures based on αSN termini. Moreover, we found that these oligomers are highly dynamic: after reaching peak levels during fibrillization, they decline and eventually disappear, suggesting their transformation into other αSN aggregated species. These findings shed light on the structural features of various αSN aggregates and their dynamics in synucleinopathies.


Assuntos
Amiloide/química , Proteínas Mutantes/química , Mutação , alfa-Sinucleína/química , Humanos , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
2.
Biotechnol Lett ; 38(1): 71-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26334936

RESUMO

OBJECTIVES: Farnesyl diphosphate synthase is a critical enzyme in the isoprenoids biosynthesis pathway responsible for ergosterol and secondary metabolites biosynthesis in fungi. RESULTS: Characterization of fds from Penicillium brevicompactum (Pbfds) was performed using TAIL-PCR and RT-PCR followed by complementation tests in Saccharomyces cerevisiae and determination of its expression profile by semi-quantitative RT-PCR. Promoter analysis suggests some binding sites for transcription factors some of which are involved in fungal growth and response to environmental stress. The Pbfds ORF encodes a cytosolic 39.7 kDa protein with a high conservation among Eurotiomycetes and the highest identity (96 %) with Pen. chrysogenum. Homology-based structural modeling suggests that the PbFDS is formed by the arrangement of 15 core helices around a large central cavity where the catalytic reaction takes place. Superimposition of the predicted 3D structure of the enzyme on its ortholog in human reveals the same folding pattern in the counterparts. CONCLUSION: The Pbfds expression may be stimulated in response to the environmental stresses and fungal growth and encodes the PBFDS--a cytosolic enzyme which with a key role in ergosterol and secondary metabolites biosynthesis.


Assuntos
Clonagem Molecular/métodos , Geraniltranstransferase/genética , Geraniltranstransferase/metabolismo , Penicillium/enzimologia , Sítios de Ligação , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica/métodos , Geraniltranstransferase/química , Modelos Moleculares , Penicillium/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
3.
Protein Expr Purif ; 109: 120-6, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25306875

RESUMO

Lipases form one of the most important groups of biocatalysts used in biotechnology. We studied the lipase from the bacterium Cohnella sp. A01 due to the versatility of thermophilic lipases in industry. In this study lipase 3646 gene from the thermophilic bacterium Cohnella sp. A01 was expressed in Escherichia coli and the enzyme was purified by a two-steps anion exchange chromatography. The purified lipase appeared to have a molecular weight of approximately 29.5kDa on SDS-PAGE. The values of Km and Vmax, calculated by the Michaelis-Menten equation, were 1077µM and 61.94U/mg, respectively. The kinetic characterization of the purified enzyme exhibited maximum activity at 70°C and pH 8.5. Activities at 50, 55 and 60°C for 120min were measured 58%, 47% and 41%, respectively. The enzyme was also highly stable at the pH range of 8.5-10.0 for 180min. The effect of EDTA indicated that the enzyme is not a metalloenzyme. The stability of lipase 3646 in the presence of organic solvents, detergents, metal ions and inhibitors suggested that this lipase could be exploited in certain industries such as detergent and leather. Lipase 3646 was determined structurally to be 37.5% α-helix, 12.8% ß-sheet, 22.7% ß-turn and 27% random coil.


Assuntos
Bacillus/enzimologia , Clonagem Molecular/métodos , Lipase/isolamento & purificação , Lipase/metabolismo , Temperatura , Cromatografia por Troca Iônica , Dicroísmo Circular , Detergentes/farmacologia , Inibidores Enzimáticos/farmacologia , Estabilidade Enzimática/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Íons , Metais/farmacologia , Modelos Moleculares , Compostos Orgânicos/farmacologia , Proteínas Recombinantes/isolamento & purificação , Solventes/farmacologia , Especificidade por Substrato/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...