Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO Rep ; 25(3): 1513-1540, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38351373

RESUMO

Membrane adenylyl cyclase AC8 is regulated by G proteins and calmodulin (CaM), mediating the crosstalk between the cAMP pathway and Ca2+ signalling. Despite the importance of AC8 in physiology, the structural basis of its regulation by G proteins and CaM is not well defined. Here, we report the 3.5 Å resolution cryo-EM structure of the bovine AC8 bound to the stimulatory Gαs protein in the presence of Ca2+/CaM. The structure reveals the architecture of the ordered AC8 domains bound to Gαs and the small molecule activator forskolin. The extracellular surface of AC8 features a negatively charged pocket, a potential site for unknown interactors. Despite the well-resolved forskolin density, the captured state of AC8 does not favour tight nucleotide binding. The structural proteomics approaches, limited proteolysis and crosslinking mass spectrometry (LiP-MS and XL-MS), allowed us to identify the contact sites between AC8 and its regulators, CaM, Gαs, and Gßγ, as well as to infer the conformational changes induced by these interactions. Our results provide a framework for understanding the role of flexible regions in the mechanism of AC regulation.


Assuntos
Adenilil Ciclases , Calmodulina , Animais , Bovinos , Adenilil Ciclases/química , Adenilil Ciclases/metabolismo , Colforsina/farmacologia , Microscopia Crioeletrônica , Proteômica , Proteínas de Ligação ao GTP/metabolismo
2.
Trends Biochem Sci ; 49(2): 156-168, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38158273

RESUMO

Membrane adenylyl cyclases (ACs) catalyze the conversion of ATP to the ubiquitous second messenger cAMP. As effector proteins of G protein-coupled receptors and other signaling pathways, ACs receive and amplify signals from the cell surface, translating them into biochemical reactions in the intracellular space and integrating different signaling pathways. Despite their importance in signal transduction and physiology, our knowledge about the structure, function, regulation, and molecular interactions of ACs remains relatively scarce. In this review, we summarize recent advances in our understanding of these membrane enzymes.


Assuntos
Adenilil Ciclases , Transdução de Sinais , Adenilil Ciclases/química , Adenilil Ciclases/metabolismo , Transdução de Sinais/fisiologia , Membrana Celular/metabolismo
4.
Nature ; 623(7985): 193-201, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37880360

RESUMO

Voltage-sensing domains control the activation of voltage-gated ion channels, with a few exceptions1. One such exception is the sperm-specific Na+/H+ exchanger SLC9C1, which is the only known transporter to be regulated by voltage-sensing domains2-5. After hyperpolarization of sperm flagella, SLC9C1 becomes active, causing pH alkalinization and CatSper Ca2+ channel activation, which drives chemotaxis2,6. SLC9C1 activation is further regulated by cAMP2,7, which is produced by soluble adenyl cyclase (sAC). SLC9C1 is therefore an essential component of the pH-sAC-cAMP signalling pathway in metazoa8,9, required for sperm motility and fertilization4. Despite its importance, the molecular basis of SLC9C1 voltage activation is unclear. Here we report cryo-electron microscopy (cryo-EM) structures of sea urchin SLC9C1 in detergent and nanodiscs. We show that the voltage-sensing domains are positioned in an unusual configuration, sandwiching each side of the SLC9C1 homodimer. The S4 segment is very long, 90 Å in length, and connects the voltage-sensing domains to the cytoplasmic cyclic-nucleotide-binding domains. The S4 segment is in the up configuration-the inactive state of SLC9C1. Consistently, although a negatively charged cavity is accessible for Na+ to bind to the ion-transporting domains of SLC9C1, an intracellular helix connected to S4 restricts their movement. On the basis of the differences in the cryo-EM structure of SLC9C1 in the presence of cAMP, we propose that, upon hyperpolarization, the S4 segment moves down, removing this constriction and enabling Na+/H+ exchange.


Assuntos
Microscopia Crioeletrônica , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização , Ativação do Canal Iônico , Ouriços-do-Mar , Trocadores de Sódio-Hidrogênio , Animais , Masculino , Adenilil Ciclases/metabolismo , AMP Cíclico/metabolismo , Flagelos/química , Flagelos/metabolismo , Flagelos/ultraestrutura , Concentração de Íons de Hidrogênio , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/química , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/metabolismo , Canais Disparados por Nucleotídeos Cíclicos Ativados por Hiperpolarização/ultraestrutura , Potenciais da Membrana , Multimerização Proteica , Ouriços-do-Mar/química , Ouriços-do-Mar/metabolismo , Ouriços-do-Mar/ultraestrutura , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/metabolismo , Trocadores de Sódio-Hidrogênio/ultraestrutura , Motilidade dos Espermatozoides , Espermatozoides/química , Espermatozoides/metabolismo , Espermatozoides/ultraestrutura
5.
Elife ; 112022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35980026

RESUMO

Mycobacterium tuberculosis adenylyl cyclase (AC) Rv1625c/Cya is an evolutionary ancestor of the mammalian membrane ACs and a model system for studies of their structure and function. Although the vital role of ACs in cellular signalling is well established, the function of their transmembrane (TM) regions remains unknown. Here, we describe the cryo-EM structure of Cya bound to a stabilizing nanobody at 3.6 Å resolution. The TM helices 1-5 form a structurally conserved domain that facilitates the assembly of the helical and catalytic domains. The TM region contains discrete pockets accessible from the extracellular and cytosolic side of the membrane. Neutralization of the negatively charged extracellular pocket Ex1 destabilizes the cytosolic helical domain and reduces the catalytic activity of the enzyme. The TM domain acts as a functional component of Cya, guiding the assembly of the catalytic domain and providing the means for direct regulation of catalytic activity in response to extracellular ligands.


Assuntos
Adenilil Ciclases , Mycobacterium tuberculosis , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Animais , Domínio Catalítico , Mamíferos/metabolismo , Mycobacterium tuberculosis/metabolismo
6.
Neuroimage Clin ; 34: 102987, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35290855

RESUMO

Infants born very preterm (VPT) are at risk of later visual problems. Although neonatal screening can identify ophthalmologic abnormalities, subtle perinatal brain injury and/or delayed brain maturation may be significant contributors to complex visual-behavioral problems. Our aim was to assess the micro and macrostructural antecedents of early visual-behavioral difficulties in VPT infants by using diffusion MRI (dMRI) at term-equivalent age. We prospectively recruited a cohort of 262 VPT infants (≤32 weeks gestational age [GA]) from five neonatal intensive care units. We obtained structural and diffusion MRI at term-equivalent age and administered the Preverbal Visual Assessment (PreViAs) questionnaire to parents at 3-4 months corrected age. We used constrained spherical deconvolution to reconstruct nine white matter tracts of the visual pathways with high reliability and performed fixel-based analysis to derive fiber density (FD), fiber-bundle cross-section (FC), and combined fiber density and cross-section (FDC). In multiple logistic regression analyses, we related these tract metrics to visual-behavioral function. Of 262 infants, 191 had both high-quality dMRI and completed PreViAs, constituting the final cohort: mean (SD) GA was 29.3 (2.4) weeks, 90 (47.1%) were males, and postmenstrual age (PMA) at MRI was 42.8 (1.3) weeks. FD and FC of several tracts were altered in infants with (N = 59) versus those without retinopathy of prematurity (N = 132). FDC of the left posterior thalamic radiations (PTR), left inferior longitudinal fasciculus (ILF), right superior longitudinal fasciculus (SLF), and left inferior fronto-occipital fasciculus (IFOF) were significantly associated with visual attention scores, prior to adjusting for confounders. After adjustment for PMA at MRI, GA, severe retinopathy of prematurity, and total brain volume, FDC of the left PTR, left ILF, and left IFOF remained significantly associated with visual attention. Early visual-behavioral difficulties in VPT infants are preceded by micro and macrostructural abnormalities in several major visual pathways at term-equivalent age.


Assuntos
Doenças do Prematuro , Retinopatia da Prematuridade , Substância Branca , Encéfalo/diagnóstico por imagem , Pré-Escolar , Feminino , Humanos , Lactente , Lactente Extremamente Prematuro , Recém-Nascido , Masculino , Reprodutibilidade dos Testes , Transtornos da Visão/diagnóstico por imagem , Substância Branca/diagnóstico por imagem
7.
Nat Commun ; 13(1): 1045, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35210418

RESUMO

Adenylyl cyclase 9 (AC9) is a membrane-bound enzyme that converts ATP into cAMP. The enzyme is weakly activated by forskolin, fully activated by the G protein Gαs subunit and is autoinhibited by the AC9 C-terminus. Although our recent structural studies of the AC9-Gαs complex provided the framework for understanding AC9 autoinhibition, the conformational changes that AC9 undergoes in response to activator binding remains poorly understood. Here, we present the cryo-EM structures of AC9 in several distinct states: (i) AC9 bound to a nucleotide inhibitor MANT-GTP, (ii) bound to an artificial activator (DARPin C4) and MANT-GTP, (iii) bound to DARPin C4 and a nucleotide analogue ATPαS, (iv) bound to Gαs and MANT-GTP. The artificial activator DARPin C4 partially activates AC9 by binding at a site that overlaps with the Gαs binding site. Together with the previously observed occluded and forskolin-bound conformations, structural comparisons of AC9 in the four conformations described here show that secondary structure rearrangements in the region surrounding the forskolin binding site are essential for AC9 activation.


Assuntos
Adenilil Ciclases , Transdução de Sinais , Adenilil Ciclases/metabolismo , Colforsina/farmacologia , Guanosina Trifosfato , Nucleotídeos
8.
Nat Commun ; 12(1): 3788, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-34145271

RESUMO

Active host cell invasion by the obligate intracellular apicomplexan parasites relies on the formation of a moving junction, which connects parasite and host cell plasma membranes during entry. Invading Toxoplasma gondii tachyzoites secrete their rhoptry content and insert a complex of RON proteins on the cytoplasmic side of the host cell membrane providing an anchor to which the parasite tethers. Here we show that a rhoptry-resident kinase RON13 is a key virulence factor that plays a crucial role in host cell entry. Cryo-EM, kinase assays, phosphoproteomics and cellular analyses reveal that RON13 is a secretory pathway kinase of atypical structure that phosphorylates rhoptry proteins including the components of the RON complex. Ultimately, RON13 kinase activity controls host cell invasion by anchoring the moving junction at the parasite-host cell interface.


Assuntos
Membrana Celular/parasitologia , Proteínas de Protozoários/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Toxoplasma/metabolismo , Toxoplasmose/patologia , Transporte Biológico/fisiologia , Células Cultivadas , Interações Hospedeiro-Parasita , Humanos , Via Secretória/fisiologia , Fatores de Virulência
9.
Curr Opin Struct Biol ; 63: 34-41, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32334344

RESUMO

The adenylyl cyclases (ACs) catalyze the production of the ubiquitous second messenger, cAMP, which in turns acts on a number of effectors and thus regulates a plethora of cellular functions. As the key enzymes in the highly evolutionarily conserved cAMP pathway, the ACs control the physiology of the cells, tissues, organs and organisms in health and disease. A comprehensive understanding of the specific role of the ACs in these processes of life requires a deep mechanistic understanding of structure and mechanisms of action of these enzymes. Here we highlight the exciting recent reports on the biochemistry and structure and higher order organization of the ACs and their signaling complexes. These studies have provided the glimpses into the principles of the AC-mediated homeostatic control of cellular physiology.


Assuntos
Adenilil Ciclases/química , Adenilil Ciclases/metabolismo , Modelos Moleculares , Transdução de Sinais , Animais , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Humanos , Ligantes , Complexos Multiproteicos , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Relação Estrutura-Atividade
10.
Sci Rep ; 9(1): 4019, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30858420

RESUMO

The full length human histone 3 lysine 4 demethylase KDM5B (PLU-1/Jarid1B) has been studied using Hydrogen/Deuterium exchange mass spectrometry, homology modelling, sequence analysis, small angle X-ray scattering and electron microscopy. This first structure on an intact multi-domain Jumonji histone demethylase reveal that the so-called PLU region, in the central region of KDM5B, has a curved α-helical three-dimensional structure, that acts as a rigid linker between the catalytic core and a region comprising four α-helices, a loop comprising the PHD2 domain, two large intrinsically disordered loops and the PHD3 domain in close proximity. The dumbbell shaped and curved KDM5B architecture observed by electron microscopy is complementary to the nucleosome surface and has a striking overall similarity to that of the functionally related KDM1A/CoREST complex. This could suggest that there are similarities between the demethylation mechanisms employed by the two histone 3 lysine 4 demethylases at the molecular level.


Assuntos
Histona Desmetilases com o Domínio Jumonji/química , Proteínas Nucleares/química , Proteínas Repressoras/química , Proteínas Correpressoras/química , Desmetilação , Histona Desmetilases/química , Humanos , Proteínas do Tecido Nervoso/química , Domínios Proteicos
11.
Brain Res ; 1665: 74-79, 2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28404451

RESUMO

Previously, we presented electrophysiological evidence for presence in mice brain slices of functional cannabinoid type I receptors (CB1Rs) within the laterodorsal tegmentum (LDT), a brain stem nucleus critical in control of arousal and rapid eye movement (REM) sleep. Further, using pharmacological agents, we provided data suggestive of the endogenous presence of cannabinoids (CBs) acting at LDT CB1Rs. However, in those studies, identification of the type(s) of CB ligands endogenously present in the LDT remained outstanding, and this information has not been provided elsewhere. Accordingly, we used the highly-sensitive liquid chromatography/mass spectrometry (LC-MS) method to determine whether N-arachidonoylethanolamide (Anandamide or AEA) and 2-arachidonyl glycerol (2-AG), which are both endogenous CB ligands acting at CB1Rs, are present in the LDT. Mice brain tissue samples of the LDT were assayed using ion trap LC-MS in selected ion monitoring mode. Chromatographic analysis and product-ion MS scans identified presence of the CBs, AEA and 2-AG, from LDT mouse tissue. Data using the LC-MS method show that AEA and 2-AG are endogenously present within the LDT and when coupled with our electrophysiological findings, lead to the suggestion that AEA and 2-AG act at electropharmacologically-demonstrated CB1Rs in this nucleus. Accordingly, AEA and 2-AG likely play a role in processes governed by the LDT, including control of states of cortical gamma band activity seen in alert, aroused states, as well as cortical and motor activity characteristic of REM sleep.


Assuntos
Ácidos Araquidônicos/metabolismo , Nível de Alerta/fisiologia , Canabinoides/metabolismo , Endocanabinoides/metabolismo , Glicerídeos/metabolismo , Alcamidas Poli-Insaturadas/metabolismo , Tegmento Mesencefálico/metabolismo , Animais , Fenômenos Eletrofisiológicos/fisiologia , Substância Cinzenta/metabolismo , Camundongos , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...