Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Synth Biol ; 10(6): 1292-1299, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33983709

RESUMO

Bacterial transduction particles were critical to early advances in molecular biology and are currently experiencing a resurgence in interest within the diagnostic and therapeutic fields. The difficulty of developing a robust and specific transduction reagent capable of delivering a genetic payload to the diversity of strains constituting a given bacterial species or genus is a major impediment to their expanded utility as commercial products. While recent advances in engineering the reactivity of these reagents have made them more attractive for product development, considerable improvements are still needed. Here, we demonstrate a synthetic biology platform derived from bacteriophage P1 as a chassis to target transduction reagents against four clinically prevalent species within the Enterobacterales order. Bacteriophage P1 requires only a single receptor binding protein to enable attachment and injection into a target bacterium. By engineering and screening particles displaying a diverse array of chimeric receptor binding proteins, we generated a potential transduction reagent for a future rapid phenotypic carbapenem-resistant Enterobacterales diagnostic assay.


Assuntos
Bacteriófago P1/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Infecções por Enterobacteriaceae/diagnóstico , Engenharia Genética/métodos , Proteínas da Cauda Viral/genética , Antibacterianos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/efeitos dos fármacos , Infecções por Enterobacteriaceae/microbiologia , Ertapenem/farmacologia , Testes de Sensibilidade Microbiana/métodos , Fenótipo , Biologia Sintética/métodos , Transdução Genética/métodos , Resistência beta-Lactâmica/efeitos dos fármacos , Resistência beta-Lactâmica/genética
2.
Environ Microbiol ; 21(4): 1395-1406, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30807684

RESUMO

Hydrogen sulfide produced by sulfate-reducing microorganisms (SRM) poses significant health and economic risks, particularly during oil recovery. Previous studies identified perchlorate as a specific inhibitor of SRM. However, constant inhibitor addition to natural systems results in new selective pressures. Consequently, we investigated the ability of Desulfovibrio alaskensis G20 to evolve perchlorate resistance. Serial transfers in increasing concentrations of perchlorate led to robust growth in the presence of 100 mM inhibitor. Isolated adapted strains demonstrated a threefold increase in perchlorate resistance compared to the wild-type ancestor. Whole genome sequencing revealed a single base substitution in Dde_2265, the sulfate adenylyltransferase (sat). We purified and biochemically characterized the Sat from both wild-type and adapted strains, and showed that the adapted Sat was approximately threefold more resistant to perchlorate inhibition, mirroring whole cell results. The ability of this mutation to confer resistance across other inhibitors of sulfidogenesis was also assayed. The generalizability of this mutation was confirmed in multiple evolving G20 cultures and in another SRM, D. vulgaris Hildenborough. This work demonstrates that a single nucleotide polymorphism in Sat can have a significant impact on developing perchlorate resistance and emphasizes the value of adaptive laboratory evolution for understanding microbial responses to environmental perturbations.


Assuntos
Adaptação Fisiológica , Desulfovibrio/efeitos dos fármacos , Desulfovibrio/fisiologia , Percloratos/farmacologia , Sulfatos/metabolismo , Desulfovibrio/enzimologia , Desulfovibrio vulgaris/genética , Farmacorresistência Bacteriana/genética , Sulfeto de Hidrogênio , Mutação , Oxirredução , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma
3.
Front Microbiol ; 9: 376, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29559962

RESUMO

Most dissimilatory perchlorate reducing bacteria (DPRB) are also capable of respiratory nitrate reduction, and preferentially utilize nitrate over perchlorate as a terminal electron acceptor. The similar domain architectures and phylogenetic relatedness of the nitrate and perchlorate respiratory complexes suggests a common evolutionary history and a potential for functionally redundant electron carriers. In this study, we identify key genetic redundancies in the electron transfer pathways from the quinone pool(s) to the terminal nitrate and perchlorate reductases in Azospira suillum PS (hereafter referred to as PS). We show that the putative quinol dehydrogenases, (PcrQ and NapC) and the soluble cytochrome electron carriers (PcrO and NapO) are functionally redundant under anaerobic growth conditions. We demonstrate that, when grown diauxically with both nitrate and perchlorate, the endogenous expression of NapC and NapO during the nitrate reduction phase was sufficient to completely erase any growth defect in the perchlorate reduction phase caused by deletion of pcrQ and/or pcrO. We leveraged our understanding of these genetic redundancies to make PS mutants with altered electron acceptor preferences. Deletion of the periplasmic nitrate reductase catalytic subunit, napA, led to preferential utilization of perchlorate even in the presence of equimolar nitrate, and deletion of the electron carrier proteins napQ and napO, resulted in concurrent reduction of nitrate and perchlorate. Our results demonstrate that nitrate and perchlorate respiratory pathways in PS share key functionally redundant electron transfer proteins and that mutagenesis of these proteins can be utilized as a strategy to alter the preferential usage of nitrate over perchlorate.

4.
mBio ; 8(1)2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28223460

RESUMO

The genetic and biochemical basis of perchlorate-dependent H2S oxidation (PSOX) was investigated in the dissimilatory perchlorate-reducing microorganism (DPRM) Azospira suillum PS (PS). Previously, it was shown that all known DPRMs innately oxidize H2S, producing elemental sulfur (So). Although the process involving PSOX is thermodynamically favorable (ΔG°' = -206 kJ â‹… mol-1 H2S), the underlying biochemical and genetic mechanisms are currently unknown. Interestingly, H2S is preferentially utilized over physiological electron donors such as lactate or acetate although no growth benefit is obtained from the metabolism. Here, we determined that PSOX is due to a combination of enzymatic and abiotic interactions involving reactive intermediates of perchlorate respiration. Using various approaches, including barcode analysis by sequencing (Bar-seq), transcriptome sequencing (RNA-seq), and proteomics, along with targeted mutagenesis and biochemical characterization, we identified all facets of PSOX in PS. In support of our proposed model, deletion of identified upregulated PS genes traditionally known to be involved in sulfur redox cycling (e.g., Sox, sulfide:quinone reductase [SQR]) showed no defect in PSOX activity. Proteomic analysis revealed differential abundances of a variety of stress response metal efflux pumps and divalent heavy-metal transporter proteins, suggesting a general toxicity response. Furthermore, in vitro biochemical studies demonstrated direct PSOX mediated by purified perchlorate reductase (PcrAB) in the absence of other electron transfer proteins. The results of these studies support a model in which H2S oxidation is mediated by electron transport chain short-circuiting in the periplasmic space where the PcrAB directly oxidizes H2S to So The biogenically formed reactive intermediates (ClO2- and O2) subsequently react with additional H2S, producing polysulfide and So as end products.IMPORTANCE Inorganic sulfur compounds are widespread in nature, and microorganisms are central to their transformation, thereby playing a key role in the global sulfur cycle. Sulfur oxidation is mediated by a broad phylogenetic diversity of microorganisms, including anoxygenic phototrophs and either aerobic or anaerobic chemotrophs coupled to oxygen or nitrate respiration, respectively. Recently, perchlorate-respiring microorganisms were demonstrated to be innately capable of sulfur oxidation regardless of their phylogenetic affiliation. As recognition of the prevalence of these organisms intensifies, their role in global geochemical cycles is being queried. This is further highlighted by the recently recognized environmental pervasiveness of perchlorate not only across Earth but also throughout our solar system. The inferred importance of this metabolism not only is that it is a novel and previously unrecognized component of the global sulfur redox cycle but also is because of the recently demonstrated applicability of perchlorate respiration in the control of biogenic sulfide production in engineered environments such as oil reservoirs and wastewater treatment facilities, where excess H2S represents a significant environmental, process, and health risk, with associated costs approximating $90 billion annually.


Assuntos
Sulfeto de Hidrogênio/metabolismo , Redes e Vias Metabólicas/genética , Percloratos/metabolismo , Rhodocyclaceae/genética , Rhodocyclaceae/metabolismo , Análise Mutacional de DNA , Deleção de Genes , Perfilação da Expressão Gênica , Oxirredução , Proteoma/análise
5.
mBio ; 5(6): e02034, 2014 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-25425235

RESUMO

UNLABELLED: Dissimilatory metal-reducing bacteria, such as Geobacter sulfurreducens, transfer electrons beyond their outer membranes to Fe(III) and Mn(IV) oxides, heavy metals, and electrodes in electrochemical devices. In the environment, metal acceptors exist in multiple chelated and insoluble forms that span a range of redox potentials and offer different amounts of available energy. Despite this, metal-reducing bacteria have not been shown to alter their electron transfer strategies to take advantage of these energy differences. Disruption of imcH, encoding an inner membrane c-type cytochrome, eliminated the ability of G. sulfurreducens to reduce Fe(III) citrate, Fe(III)-EDTA, and insoluble Mn(IV) oxides, electron acceptors with potentials greater than 0.1 V versus the standard hydrogen electrode (SHE), but the imcH mutant retained the ability to reduce Fe(III) oxides with potentials of ≤-0.1 V versus SHE. The imcH mutant failed to grow on electrodes poised at +0.24 V versus SHE, but switching electrodes to -0.1 V versus SHE triggered exponential growth. At potentials of ≤-0.1 V versus SHE, both the wild type and the imcH mutant doubled 60% slower than at higher potentials. Electrodes poised even 100 mV higher (0.0 V versus SHE) could not trigger imcH mutant growth. These results demonstrate that G. sulfurreducens possesses multiple respiratory pathways, that some of these pathways are in operation only after exposure to low redox potentials, and that electron flow can be coupled to generation of different amounts of energy for growth. The redox potentials that trigger these behaviors mirror those of metal acceptors common in subsurface environments where Geobacter is found. IMPORTANCE: Insoluble metal oxides in the environment represent a common and vast reservoir of energy for respiratory microbes capable of transferring electrons across their insulating membranes to external acceptors, a process termed extracellular electron transfer. Despite the global biogeochemical importance of metal cycling and the ability of such organisms to produce electricity at electrodes, fundamental gaps in the understanding of extracellular electron transfer biochemistry exist. Here, we describe a conserved inner membrane redox protein in Geobacter sulfurreducens which is required only for electron transfer to high-potential compounds, and we show that G. sulfurreducens has the ability to utilize different electron transfer pathways in response to the amount of energy available in a metal or electrode distant from the cell.


Assuntos
Membrana Celular/enzimologia , Citocromos c/metabolismo , Geobacter/enzimologia , Geobacter/metabolismo , Metais/metabolismo , Citocromos c/genética , Eletricidade , Deleção de Genes , Geobacter/genética , Geobacter/crescimento & desenvolvimento , Oxirredução
6.
Appl Environ Microbiol ; 78(19): 6987-95, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22843516

RESUMO

The current understanding of dissimilatory metal reduction is based primarily on isolates from the proteobacterial genera Geobacter and Shewanella. However, environments undergoing active Fe(III) reduction often harbor less-well-studied phyla that are equally abundant. In this work, electrochemical techniques were used to analyze respiratory electron transfer by the only known Fe(III)-reducing representative of the Acidobacteria, Geothrix fermentans. In contrast to previously characterized metal-reducing bacteria, which typically reach maximal rates of respiration at electron acceptor potentials of 0 V versus standard hydrogen electrode (SHE), G. fermentans required potentials as high as 0.55 V to respire at its maximum rate. In addition, G. fermentans secreted two different soluble redox-active electron shuttles with separate redox potentials (-0.2 V and 0.3 V). The compound with the lower midpoint potential, responsible for 20 to 30% of electron transfer activity, was riboflavin. The behavior of the higher-potential compound was consistent with hydrophilic UV-fluorescent molecules previously found in G. fermentans supernatants. Both electron shuttles were also produced when cultures were grown with Fe(III), but not when fumarate was the electron acceptor. This study reveals that Geothrix is able to take advantage of higher-redox-potential environments, demonstrates that secretion of flavin-based shuttles is not confined to Shewanella, and points to the existence of high-potential-redox-active compounds involved in extracellular electron transfer. Based on differences between the respiratory strategies of Geothrix and Geobacter, these two groups of bacteria could exist in distinctive environmental niches defined by redox potential.


Assuntos
Acidobacteria/metabolismo , Compostos Ferrosos/metabolismo , Riboflavina/metabolismo , Transporte de Elétrons , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...