Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fish Biol ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38476052

RESUMO

Senegalese sole, Solea senegalensis, is a flatfish of high commercial value in the world. It has been identified as an interesting and promising species for marine commercial aquaculture diversification in Europe for at least four decades and was introduced to China in 2003. Early ontogenesis from embryo to juvenile stages in S. senegalensis was analysed under controlled laboratory conditions to provide morphological information for aquaculture. From 0 to 59 days post hatching (dph), 10-20 larvae were sampled and measured each day (0-17 dph) or every 2-6 days (17-59 dph). Morphological characteristics from the egg to the juvenile stage were described. The eggs were separate and spherical with multiple oil globules. After 3 dph, the yolk sac was completely absorbed, mouth and anus were open, a swim bladder appeared, and larvae began feeding on rotifers (Brachionus plicatilis). The larvae began metamorphosis as the notochord flexed upward and the left eye migrated upward after 10 dph. The left eye migrated to the dorsal midline at 15 dph. At 19 dph, the left eye was translocated to the right-ocular side, and the juveniles adopted a benthic lifestyle. The swim bladder degenerated, and the juveniles completed metamorphosis at 23 dph. The growth patterns of some parameters (TL, SL, BH, BW) during larval and juvenile development stages were identified. The inflection points, which are slopes of growth changes, were calculated in growth curves. Three inflection points occurring in the growth curves of larvae and juveniles were found to be associated with metamorphosis, weaning, and transitions in feeding habits. The basic information of embryo development and ontogenesis in this study represents a valuable contribution to the S. senegalensis industry, especially in artificial breeding and rearing techniques.

2.
Genomics ; 116(2): 110811, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387766

RESUMO

Sugarcane molasses is one of the main raw materials for bioethanol production, and Saccharomyces cerevisiae is the major biofuel-producing organism. In this study, a batch fermentation model has been used to examine ethanol titers of deletion mutants for all yeast nonessential genes in this yeast genome. A total of 42 genes are identified to be involved in ethanol production during fermentation of sugarcane molasses. Deletion mutants of seventeen genes show increased ethanol titers, while deletion mutants for twenty-five genes exhibit reduced ethanol titers. Two MAP kinases Hog1 and Kss1 controlling the high osmolarity and glycerol (HOG) signaling and the filamentous growth, respectively, are negatively involved in the regulation of ethanol production. In addition, twelve genes involved in amino acid metabolism are crucial for ethanol production during fermentation. Our findings provide novel targets and strategies for genetically engineering industrial yeast strains to improve ethanol titer during fermentation of sugarcane molasses.


Assuntos
Saccharomycetales , Saccharum , Fermentação , Etanol/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharum/genética , Saccharum/metabolismo , Saccharomycetales/metabolismo , Sistema de Sinalização das MAP Quinases , Melaço , Aminoácidos
3.
Animals (Basel) ; 13(21)2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37958175

RESUMO

BACKGROUND: We investigated the growth and feeding characteristics of threadsail filefish, Stephanolepis cirrhifer, during early ontogenesis. METHODS: The growth indices of hatchlings fed compound feed were measured from 0 to 50 days post hatching (dph). The absorption time of the yolk sac and oil globule, as well as the rate of first feeding were measured to characterise the early growth stage and determine the point-of-no-return (PNR). Feeding characteristics and rhythms were investigated under a light/dark cycle and under continuous light. RESULTS: Growth indices increased significantly at 24, 28, 30, 40, 45, and 50 dph. The yolk sac and oil globules were completely absorbed before 4 dph, indicative of a short mixed-nutrition period at 3-4 dph. Under starvation conditions, the first feeding rate was highest (86%) at 0.5 dph and then decreased to 53.3% at 1.5 dph and 26.2% at 2 dph, suggesting that the PNR occurs at 1.5-2 dph. The feeding peak appeared at 15:00-18:00 and under light conditions, while the feeding trough appeared at 0:00-3:00. CONCLUSIONS: Compound feed supplied adequate nutrition for early growth and development. The peaks and troughs of feeding times were indicative of daytime feeding behaviour. These results provide guidance for successful rearing of filefish seedlings and juveniles.

4.
Cells ; 12(22)2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37998369

RESUMO

(1) Fshß and Lhß showed stronger signals and higher transcript levels from 590 to 1050 dph than at earlier stages, implying their active involvement during primary oocyte development. (2) Fshß and Lhß at lower levels were detected during the phases of ovarian differentiation and oogonial proliferation. (3) E2 concentrations increased significantly at 174, 333, and 1435 dph, while T concentrations exhibited significant increases at 174 and 333 dph. These findings suggest potential correlations between serum E2 concentrations and the phases of oogonial proliferation and pre-vitellogenesis.


Assuntos
Bass , Feminino , Animais , Bass/metabolismo , Diferenciação Sexual , Hormônio Liberador de Gonadotropina , Hormônios Esteroides Gonadais , Subunidade beta do Hormônio Folículoestimulante/genética , Hormônio Luteinizante Subunidade beta , Encéfalo/metabolismo
5.
Animals (Basel) ; 13(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37443845

RESUMO

The light spectrum is a key environmental cue involved in growth and reproduction in teleosts. This study investigated the effects of exposure on juvenile red spotted grouper exposed to white (control), red (590 nm), blue (480 nm), and green (520 nm) light-emitting diodes (LEDs) (12 h light:12 h dark) for two months. The body weight (BW), total length (TL), condition factor (CF), weight gain rate (WGR), gonadosomatic index (GSI), and hepatosomatic index (HSI) were assessed. Gonadal development was observed. The gene expression of growth-related hormones, such as growth hormone (GH), pre-pro-somatostatin-I (PSS-I), neuropeptide Y (NPY), and CCK, and of reproduction-related hormones, such as Kiss1, Kiss2, GPR54, sbGnRH, FSHß, and LHß, was analyzed. The results showed that the fish in the white LED group exhibited the best BW, TL, CF, WGR, and HSI after one or two months. The fish exposed to white LEDs showed the best growth after two months, but no significant differences in GH levels were detected. Contrarily, the expression levels of the PSS-I significantly increased (p < 0.05) in fish from the white group, suggesting the complex regulation of GH production and the limited effects of PSS-I on the inhibition of GH synthesis and somatic growth. The significantly increased NPY levels in the four LED groups (p < 0.05) indicated that these four LED spectra were effective in stimulating food intake and energy homeostasis. After two months, the gonads developed from chromatin nucleolar-stage oocytes to perinucleolar-stage oocytes in the four LED groups. The gene expression of Kiss2 and GPR54 in the four LED groups and of sbGnRH in the white and blue LED groups significantly increased when compared to that in the initial group (p < 0.05), while there were no significant differences in FSHß and LHß expression in the four LED groups. These results suggest that FSH and LH may not play important roles in gonadal development in juvenile red spotted grouper that are exposed to these four LED spectra.

6.
J Hazard Mater ; 438: 129466, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35803194

RESUMO

Biochar has been widely used for the remediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil, but its mechanism of influencing PAH biodegradation remains unclear. Here, DNA-stable isotope probing coupled with high-throughput sequencing was employed to assess its influence on phenanthrene (PHE) degradation, the active PHE-degrading microbial community and PAH-degradation genes (PAH-RHDα). Our results show that both Low-BC and High-BC (soils amended with 1 % and 4 % w/w biochar, respectively) treatments significantly decreased PHE biodegradation and bioavailable concentrations with a dose-dependent effect compared to Non-BC treatment (soils without biochar). This result could be attributed to the immobilisation of PHE and alteration of the composition and abundance of the PHE-degrading microbial consortium by biochar. Active PHE degraders were identified, and those in the Non-BC, Low-BC and High-BC microcosms differed taxonomically. Sphaerobacter, unclassified Diplorickettsiaceae, Pseudonocardia, and Planctomyces were firstly linked with PHE biodegradation. Most importantly, the abundances of PHE degraders and PAH-RHDα genes in the 13C-enriched DNA fractions of biochar-amended soils were greatly attenuated, and were significantly positively correlated with PHE biodegradation. Our findings provide a novel perspective on PAH biodegradation mechanisms in biochar-treated soils, and expand the understanding of the biodiversity of microbes involved in PAH biodegradation in the natural environment.


Assuntos
Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Biodegradação Ambiental , Carvão Vegetal , DNA , Fenantrenos/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Solo , Microbiologia do Solo , Poluentes do Solo/metabolismo
7.
J Hazard Mater ; 421: 126768, 2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-34365232

RESUMO

This study provides new knowledge on the mobility, behavior, and partitioning of 17 perfluoroalkyl substances (PFASs) in the water-sediment-plant system along the Dongzhulong and Xiaoqing Rivers. The fate of PFASs in these rivers is also discussed. The study area is affected by the industrial production of perfluorooctanoic acid (PFOA). The ∑PFASs in water and sediments close to the industrial discharge were 84,000 ± 2000 ng/L and 2300 ± 200 ng/g dw, respectively, with the concentrations decreasing along the river due to dilution. PFOA was the dominant compound (74-97% of the ∑PFASs), although other PFASs were identified close to urban areas. Principal component analysis and solid-liquid distribution coefficients revealed that long-chain PFASs accumulated in the sediment whereas short-chain PFASs remained in the water all along the river. PFASs were taken up by plants and remobilized to different plant compartments according to shoot concentration factors (SCFs), root concentration factors (RCF), and transfer factors (TFs). Among the four plant species studied, floating plants absorbed high levels of PFASs, while rooted species translocated short-chain PFASs from the roots to the shoots. Therefore, floating species, due to their high uptake capacity and large proliferation rate, could eventually be used for phytoremediation.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Ácidos Alcanossulfônicos/análise , China , Monitoramento Ambiental , Fluorocarbonos/análise , Rios , Água , Poluentes Químicos da Água/análise
8.
Environ Int ; 156: 106642, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34004449

RESUMO

Per- and polyfluoroalkyl substances (PFASs) are ubiquitous in the environment but pose potential risks to ecosystems and human health. The soil-plant system plays an important role in the bioaccumulation of PFASs. Because most PFASs in the natural environment are anionic and amphiphilic (both lipophilic and hydrophilic), their sorption and accumulation behaviors differ from those of neutral organic and common ionic compounds. In this review, we discuss processes affecting the availability of PFASs in soil after analyzing the potential mechanisms underlying the sorption and uptake of PFASs in the soil-plant system. We also summarize the current knowledge on root uptake and translocation of PFASs in plants. We found that the root concentration factor of PFASs for plants grown in soil was not significantly correlated with hydrophobicity, whereas the translocation factor was significantly and negatively correlated with PFAS hydrophobicity regardless of whether plants were grown hydroponically or in soil. Further research on the cationic, neutral, and zwitterionic forms of diverse PFASs is urgently needed to comprehensively understand the environmental fates of PFASs in the soil-plant system. Additional research directions are suggested, including the development of more accurate models and techniques to evaluate the bioavailability of PFASs, the effects of root exudates and rhizosphere microbiota on the bioavailability and plant uptake of PFASs, and the roles of different plant organelles, lipids, and proteins in the accumulation of PFASs by plants.


Assuntos
Fluorocarbonos , Poluentes do Solo , Ecossistema , Fluorocarbonos/análise , Humanos , Plantas , Solo
9.
J Agric Food Chem ; 69(7): 2062-2068, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33555873

RESUMO

Plant uptake and translocation of perfluorooctane sulfonate (PFOS) are critical for food safety and raise major concerns. However, those processes are associated with many undisclosed mechanisms, especially when PFOS coexist with heavy metals. In this study, we investigated the effect of copper (Cu) on PFOS distribution in maize tissues by assessing the PFOS concentration and enantioselectivity. The presence of <100 µmol/L Cu exerted a limited effect on PFOS bioaccumulation, while >100 µmol/L Cu damaged the root cell membrane and increased root permeability, resulting in a higher PFOS concentration in roots. The suppression of acropetal translocation might be attributed to Cu inhibition of carrier proteins. The enantiomer fraction (EF) of 1m-PFOS at <100 µmol/L Cu was higher than that in a commercial product (0.5). Racemic PFOS was detected at >100 µmol/L Cu in roots and the EF variation changed from positive to negative in shoots. These EF results evidenced the existence of a protein-mediated uptake pathway. Besides, this study indicated the challenge of chiral signature application in PFOS source identification, given the effects of heavy metals and plants on PFOS enantioselectivity. The findings provide insight into PFOS bioaccumulation in plants cocontaminated with Cu and will facilitate environmental risk assessment.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Cobre , Zea mays
10.
J Hazard Mater ; 403: 123990, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33265028

RESUMO

Soil is a reservoir of environmental resistomes. Information about their distribution, profiles, and driving forces in undisturbed environments is essential for understanding and managing modern antibiotic resistance genes (ARGs) in human disturbed environments. However, knowledge about the resistomes in pristine soils is limited, particularly at national scale. Here, we conducted a national-scale investigation of soil resistomes in pristine forests across China. Although the antibiotics content was low and ranged from below limit of detection (LOD) to 0.290 µg/kg, numerous detected ARGs conferring resistance to major classes of modern antibiotics were identified and indicated forest soils as a potential source of resistance traits. ARGs ranged from 6.20 × 10-7 to 2.52 × 10-3 copies/16S-rRNA and were predominated by those resisting aminoglycoside and encoding deactivation mechanisms. Low abundance of mobile genetic elements (MGEs) and its scarcely positive connections with ARGs suggest the low potential of horizontal gene transfer. The geographic patterns of ARGs and ARG-hosts in pristine forest soils were mainly driven by soil physiochemical variables and followed a distance-decay relationship. This work focusing on pristine soils can provide valuably new information for our understanding of the ARGs in human disturbed environments.


Assuntos
Antibacterianos , Solo , China , Florestas , Genes Bacterianos , Microbiologia do Solo
11.
Environ Sci Technol ; 55(2): 962-973, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33371686

RESUMO

Plants usually promote pollutant bioremediation by several mechanisms including modifying the diversity of functional microbial species. However, conflicting results are reported that root exudates have no effects or negative effects on organic pollutant degradation. In this study, we investigated the roles of ryegrass in phenanthrene degradation in soils using DNA stable isotope probing (SIP) and metagenomics to reveal a potential explanation for conflicting results among phytoremediation studies. Phenanthrene biodegradation efficiency was improved by 8% after 14 days of cultivation. Twelve and ten operational taxonomic units (OTUs) were identified as active phenanthrene degraders in non-rhizosphere and rhizosphere soils, respectively. The active phenanthrene degraders exhibited higher average phylogenetic distances in rhizosphere soils (0.33) than non-rhizosphere soils (0.26). The Ka/Ks values (the ratio of nonsynonymous to synonymous substitutions) were about 10.37% higher in the rhizosphere treatment among >90% of all key carbohydrate metabolism-related genes, implying that ryegrass may be an important driver of microbial community variation in the rhizosphere by relieving the carbohydrate metabolism pressure and improving the survival ability of r-strategy microbes. Most Ka/Ks values of root-exudate-related metabolism genes exhibited little change, except for fumarate hydratase that increased 13-fold in the rhizosphere compared to that in the non-rhizosphere treatment. The Ka/Ks values of less than 50% phenanthrene-degradation-related genes were affected, 30% of which increased and 70% behaved oppositely. Genes with altered Ka/Ks values had a low percentage and followed an inconsistent changing tendency, indicating that phenanthrene and its metabolites are not major factors influencing the active degraders. These results suggested the importance of carbohydrate metabolism, especially fumaric acid, in rhizosphere community shift, and hinted at a new hypothesis that the rhizosphere effect on phenanthrene degradation efficiency depends on the existence of active degraders that have competitive advantages in carbohydrate and fumaric acid metabolism.


Assuntos
Lolium , Microbiota , Fenantrenos , Poluentes do Solo , Biodegradação Ambiental , Metabolismo dos Carboidratos , Fenantrenos/análise , Filogenia , Raízes de Plantas/química , Rizosfera , Microbiologia do Solo , Poluentes do Solo/análise
12.
Sci Total Environ ; 736: 139472, 2020 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-32473454

RESUMO

Microplastics (MPs) are widely distributed in aquatic environments. They may release toxic substances or act as carriers for other organic compounds and pathogens, with potential to cause harm to the ecological environment and human health. A key concern is how MPs interact with organic compounds. We reviewed related works conducted under both laboratory conditions and in field aquatic environments to investigate the mechanisms of interactions between MPs and organic compounds from three perspectives: MPs, organic compounds, and environmental factors. The crystallinity and specific surface area of the MPs, and the functional groups, ionic form and strength of both MPs and organic compounds are key factors affecting their interactions. Environmentally realistic concentration settings for both MPs and organic compounds are critical for interpretation of the results of sorption experiments. The effect of salinity on interactions is mainly due to changes in pH. These results contribute to a better understanding of the environmental behavior, and potential ecological and human health risks of microplastics.

13.
Huan Jing Ke Xue ; 35(7): 2672-9, 2014 Jul.
Artigo em Chinês | MEDLINE | ID: mdl-25244854

RESUMO

The spatial and temporal distribution of 16 polycyclic aromatic hydrocarbons (PAHs) has been investigated in water and sediments of Zhoushan coastal area every two months in 2012. The concentrations of total PAHs ranged from 382.3 to 816.9 ng x L(-1), with the mean value of 552.5 ng x L(-1) in water; whereas it ranged from 1017.9 to 3047.1 ng x g(-1), with the mean value of 2 022.4 ng x g(-1) in sediment. Spatial distribution showed that Yangshan and Yanwoshan offshore area had the maximum and minimum of total PAHs contents in water, while the maximum and minimum occurred at Yangshan and Zhujiajian Nansha offshore area in sediment. Temporal distribution revealed that total PAHs contents in water reached the maximum and minimum values in October and June, however in sediments these values were found in August and June, respectively. The PAHs pollution was affected by oil emission, charcoal and coal combustion. Using the biological threshold and exceeded coefficient method to assess the ecological risk of PAHs in Zhoushan coastal area, the result showed that sigma PAHs had a lower probability of potential risk, while there was a higher probability of potential risk for acenaphthylene monomer, and there might be ecological risk for acenaphthene and fluorene. Distribution of PAHs between sediment and water showed that Zhoushan coastal sediment enriched a lot of PAHs, meanwhile the enrichment coefficient (K(d) value) of sediment in Daishan island was larger than that in Zhoushan main island.


Assuntos
Monitoramento Ambiental , Sedimentos Geológicos/química , Hidrocarbonetos Policíclicos Aromáticos/análise , Água do Mar/química , Poluentes Químicos da Água/análise , Acenaftenos/análise , China , Fluorenos/análise , Medição de Risco
14.
Skin Res Technol ; 14(1): 103-11, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18211608

RESUMO

BACKGROUND/PURPOSE: Oxidation of proteins and amino acids is associated with generation of ultraweak photon emission (UPE), which may be used to assess oxidative processes in the skin in a non-invasive way. This first part of a series of reports addresses the physicochemical basis of oxidation-induced UPE in the skin, with a special focus on the contribution of amino acid oxidation. METHODS: UPE of biological samples and protein/amino acid solutions following oxidation with H(2)O(2) in the presence of Fe(2+) was recorded using a sensitive photomultiplier system. Signals were analyzed with regard to overall signal intensity and spectral distribution. RESULTS: Increasing concentrations of H(2)O(2) in aqueous bovine serum albumin solutions induced linearly correlated UPE and protein carbonyl compounds, with a substantially higher sensitivity for the measurement of UPE. In single amino acid solutions, strong UPE signals were generated by oxidation from Phe, Trp, His, and Cys, and weak signals from Lys and Thr. Analysis of reaction products by MS revealed high oxidative material turnover for Cys and His, whereas barely detectable oxidative material turnover seems to be sufficient to generate a UPE signal of similar strength from Trp and Phe. Combination of different amino acids did not result in a simple addition of individual oxidation-induced UPE signals, but in interactions ranging from antagonism to clear synergism. Synergism was evident between Trp- and UPE-generating amino acids such as Thr, Cys, and His, with the strongest synergism by far observed between Trp and His. The strikingly different individual UPE spectra of His and Trp, despite being of comparable overall strength, were congruent with a pure Trp UPE spectrum after combining His with Trp in solution, indicating energy transfer between both amino acids. Combination of Trp and DNA, which also gives UPE signals following oxidation, did not result in a synergistically enhanced or antagonized overall UPE signal, but in a simple addition of individual UPE signals. CONCLUSION: Measurement of UPE could be proven to be a highly sensitive method to assess oxidative processes in biological molecules. The reported data indicate that UPE generated by oxidation stressed skin is mainly due to non-fluorescent photon emission via Trp, whereby Trp acts as an energy receptor from other excited species of oxidation-modified amino acids.


Assuntos
Aminoácidos/metabolismo , Biofísica/métodos , Estresse Oxidativo , Fótons , Proteínas/metabolismo , Soroalbumina Bovina/metabolismo , Pele/metabolismo , Aminoácidos/análise , Aminoácidos/química , Animais , Peróxido de Benzoíla/farmacologia , DNA/química , Humanos , Peróxido de Hidrogênio/farmacologia , Técnicas In Vitro , Ferro , Cinética , Espectrometria de Massas , Oligonucleotídeos/química , Oxirredução , Carbonilação Proteica , Proteínas/química , Soroalbumina Bovina/química , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Suínos , Raios Ultravioleta
15.
Skin Res Technol ; 14(1): 112-20, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18211609

RESUMO

BACKGROUND/PURPOSE: Several physical or chemical environmental stressors generate reactive oxygen species, which trigger oxidation reactions of cells or tissues and thereby induce a correlated ultraweak photon emission (UPE) signal. The present study was designed to qualify and validate UPE measurement following ultraviolet (UV) excitation of porcine and human skin as an analytical method to assess the potency of topical antioxidants in vivo. METHODS: UPE of porcine skin in vitro and human skin in vivo following excitation with UVA was recorded using sensitive photomultiplier systems. For validation purposes, the effects of variation of extrinsic and intrinsic parameters encompassing skin thickness, humidity, temperature, pH, and composition of the surrounding atmosphere were assessed. Signals were analyzed with regard to overall signal intensity and spectral distribution. In two clinical trials enrolling 20 volunteers each, the effects of topical antioxidant treatment on UVA-induced UPE were validated. RESULTS: Different stressors encompassing exposition to ozone, UVA irradiation, or even cigarette smoke induced UPE of skin. Critical parameters affecting the quality and quantity of the UPE signal were the spectral composition of the exciting UV light, skin temperature, skin humidity, and the O(2) concentration of the surrounding atmosphere. Generally, UVA-induced UPE decreased with increasing temperature, humidity, and O(2) concentration. Skin pH had no significant effect on UPE with regard to signal quality and quantity over a pH range of 2.8-8.2. In a clinical study UPE measurement following UVA excitation could precisely reflect a dose-dependent antioxidant effect of topically applied vitamin C and alpha-glucosylrutin. CONCLUSION: Our data indicate that UVA irradiation induces UPE especially in deeper (living) skin layers, where antioxidants must be active in order to interfere with accelerated skin ageing. Based on the clinical data, and with knowledge of modulating external variables, UPE measurement following UV excitation can be qualified as a reliable and valid method for the non-invasive measurement of antioxidant efficacy on the skin.


Assuntos
Biofísica/métodos , Estresse Oxidativo , Fótons , Pele/metabolismo , Raios Ultravioleta , Adolescente , Adulto , Idoso , Animais , Ácido Ascórbico/farmacologia , Feminino , Glicerol/farmacologia , Humanos , Técnicas In Vitro , Cinética , Pessoa de Meia-Idade , Oxigênio , Doses de Radiação , Rutina/análogos & derivados , Rutina/farmacologia , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Fenômenos Fisiológicos da Pele , Estatísticas não Paramétricas , Suínos , Trissacarídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...