Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci China Life Sci ; 67(6): 1089-1105, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38842635

RESUMO

Histone H3 Lys36 (H3K36) methylation and its associated modifiers are crucial for DNA double-strand break (DSB) repair, but the mechanism governing whether and how different H3K36 methylation forms impact repair pathways is unclear. Here, we unveil the distinct roles of H3K36 dimethylation (H3K36me2) and H3K36 trimethylation (H3K36me3) in DSB repair via non-homologous end joining (NHEJ) or homologous recombination (HR). Yeast cells lacking H3K36me2 or H3K36me3 exhibit reduced NHEJ or HR efficiency. yKu70 and Rfa1 bind H3K36me2- or H3K36me3-modified peptides and chromatin, respectively. Disrupting these interactions impairs yKu70 and Rfa1 recruitment to damaged H3K36me2- or H3K36me3-rich loci, increasing DNA damage sensitivity and decreasing repair efficiency. Conversely, H3K36me2-enriched intergenic regions and H3K36me3-enriched gene bodies independently recruit yKu70 or Rfa1 under DSB stress. Importantly, human KU70 and RPA1, the homologs of yKu70 and Rfa1, exclusively associate with H3K36me2 and H3K36me3 in a conserved manner. These findings provide valuable insights into how H3K36me2 and H3K36me3 regulate distinct DSB repair pathways, highlighting H3K36 methylation as a critical element in the choice of DSB repair pathway.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Histonas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Humanos , Metilação , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Proteína de Replicação A/metabolismo , Proteína de Replicação A/genética , Recombinação Homóloga , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Reparo do DNA , Cromatina/metabolismo , Cromatina/genética
2.
Cell Rep ; 42(10): 113186, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37796660

RESUMO

Loss of transcription-coupled histone H3 lysine 36 trimethylation (H3K36me3) contributes to shorter lifespans in eukaryotes. However, the molecular mechanism of the decline of H3K36me3 during aging remains poorly understood. Here, we report that the degradation of the methyltransferase Set2 is the cause of decreased H3K36me3 levels during chronological aging in budding yeast. We show that Set2 protein degradation during cellular senescence and chronological aging is mainly mediated by the ubiquitin-conjugating E2 enzyme Ubc3 and the E3 ligase Bre1. Lack of Bre1 or abolishment of the ubiquitination stabilizes Set2 protein, sustains H3K36me3 levels at the aging-related gene loci, and upregulates their gene expression, thus leading to extended chronological lifespan. We further illustrate that Gcn5-mediated Set2 acetylation is a prerequisite for Bre1-catalyzed Set2 polyubiquitination and proteolysis during aging. We propose that two sequential post-translational modifications regulate Set2 homeostasis, suggesting a potential strategy to target the Gcn5-Bre1-Set2 axis for intervention of longevity.


Assuntos
Envelhecimento , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Histonas/metabolismo , Metilação , Metiltransferases/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Envelhecimento/genética
3.
FEBS Open Bio ; 11(8): 2225-2235, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34115924

RESUMO

Methyltransferase Set2-mediated methylation of histone H3 lysine 36 (H3K36), which involves the addition of up to three methyl groups at this site, has been demonstrated to function in many chromatin-coupled events. The methylation of H3K36 is known to recruit different chromatin effector proteins, affecting transcription, mRNA splicing and DNA repair. In this study, we engineered two yeast set2 mutants that lack H3K36 mono/dimethylation (H3K36me1/2) and trimethylation (H3K36me3), respectively, and characterized their roles in the production of antisense transcripts under nutrient-rich conditions. Using our new bioinformatics identification pipeline analysis, we are able to identify a larger number of antisense transcripts in set2∆ cells than has been published previously. We further show that H3K36me1/2 or H3K36me3 redundantly repressed the production of antisense transcripts. Moreover, gene ontology (GO) analysis implies that H3K36me3-mediated antisense transcription might play a role in DNA replication and DNA damage repair, which is independent of regulation of the corresponding sense gene expression. Overall, our results validate a coregulatory mechanism of different H3K36 methylation states, particularly in the repression of antisense transcription.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...