Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tree Physiol ; 35(9): 949-63, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26209617

RESUMO

Global warming and associated decreases in summer rainfall may threaten tree vitality and forest productivity in many regions of the temperate zone in the future. One option for forestry to reduce the risk of failure is to plant genotypes which combine high productivity with drought tolerance. Growth experiments with provenances from different climates indicate that drought exposure can trigger adaptive drought responses in temperate trees, but it is not well known whether and to what extent regional precipitation reduction can increase the drought resistance of a species. We conducted a common garden growth experiment with five European beech (Fagus sylvatica L.) populations from a limited region with pronounced precipitation heterogeneity (816-544 mm year(-1)), where phylogenetically related provenances grew under small to large water deficits. We grew saplings of the five provenances at four soil moisture levels (dry to moist) and measured ∼30 morphological (leaf and root properties, root : shoot ratio), physiological (leaf water status parameters, leaf conductance) and growth-related traits (above- and belowground productivity) with the aim to examine provenance differences in the drought response of morphological and physiological traits and to relate the responsiveness to precipitation at origin. Physiological traits were more strongly influenced by provenance (one-third of the studied traits), while structural traits were primarily affected by water availability in the experiment (two-thirds of the traits). The modulus of leaf tissue elasticity ϵ reached much higher values late in summer in plants from moist origins resulting in more rapid turgor loss and a higher risk of hydraulic failure upon drought. While experimental water shortage affected the majority of morphological and productivity-related traits in the five provenances, most parameters related to leaf water status were insensitive to water shortage. Thus, plant morphology, and root growth in particular, did respond to reduced water availability with higher phenotypic plasticity than did physiology. We conclude that beech provenances exposed to different precipitation regimes have developed some genotypic differences with respect to leaf water status regulation, but these adaptations are associated with only minor adaptation in plant morphology and they do not affect the growth rate of the saplings.


Assuntos
Adaptação Fisiológica , Secas , Fagus/fisiologia , Chuva , Módulo de Elasticidade , Osmose , Brotos de Planta/fisiologia , Estômatos de Plantas/fisiologia , Característica Quantitativa Herdável , Estações do Ano
2.
Tree Physiol ; 34(12): 1348-61, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25430883

RESUMO

Rapidly decreasing water availability as a consequence of climate change is likely to endanger the range of long-lived tree species. A pressing question is, therefore, whether adaptation to drought exists in important temperate tree species like European beech (Fagus sylvatica L.), a wide-spread, dominant forest tree in Central Europe. Here, five beech stands were selected along a precipitation gradient from moist to dry conditions. Neutral genetic markers revealed strong variation within and little differentiation between the populations. Natural regeneration from these stands was transferred to a common garden and used to investigate the expression of genes for abscisic acid (ABA)-related drought signaling [9-cis-epoxy-dioxygenase (NCED), protein phosphatase 2C (PP2C), early responsive to dehydration (ERD)] and stress protection [ascorbate peroxidase (APX), superoxide dismutase (SOD), aldehyde dehydrogenase (ALDH), glutamine amidotransferase (GAT)] that are involved in drought acclimation. We hypothesized that progenies from dry sites exhibit constitutively higher expression levels of ABA- and stress-related genes and are less drought responsive than progenies from moist sites. Transcript levels and stress responses (leaf area loss, membrane integrity) of well-irrigated and drought-stressed plants were measured during the early, mid- and late growing season. Principal component (PC) analysis ordered the beech progenies according to the mean annual precipitation at tree origin by the transcript levels of SOD, ALDH, GAT and ERD as major loadings along PC1. PC2 separated moist and drought treatments with PP2C levels as important loading. These results suggest that phosphatase-mediated signaling is flexibly acclimated to the current requirements, whereas stress compensatory measures exhibited genotypic variation, apparently underlying climate selection. In contrast to expectation, the drought responses were less pronounced than the progeny-related differences and the transcript levels were constitutively lower in beeches from dry than from moist sites. These results imply that beeches from dry origins may have evolved mechanisms to avoid oxidative stress.


Assuntos
Aclimatação/genética , Clima , Secas , Fagus/genética , Variação Genética , Estresse Fisiológico/genética , Água , Ácido Abscísico/genética , Ácido Abscísico/metabolismo , Mudança Climática , Fagus/metabolismo , Genes de Plantas , Genótipo , Estresse Oxidativo/genética , Chuva , Transdução de Sinais , Transcrição Gênica , Árvores
3.
Planta ; 238(3): 577-86, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23779000

RESUMO

Recent studies have demonstrated that plants alter root growth and decrease competition with roots of the same individual (self); however, the physiological traits accompanying this response are still widely unknown. In this study, we investigated the effect of root identity on gas exchange in the model species pea (Pisum sativum L.). Split-root plants were planted so that each pot contained either two roots of the same plant (self) or of two different plants (non-self), and the responses of biomass, photosynthesis, and respiration were measured. The photosynthetic rate was not affected by the identity of the root neighbor. We found a reduction of leaf dark respiration by half, accompanied by an increase in nocturnal root respiration by 29 % in plants neighboring with non-self. The activity of the alternative oxidase (AOX) pathway increased when plants responded to non-self neighbors. The increased activity of AOX in plants responding to non-self indicates carbon imbalances in roots, possibly as a consequence of increased root exudation and communication between individuals. If such an effect occurs more widely, it may change the assumptions made for the quantity of respiration as used in carbon budget models.


Assuntos
Pisum sativum/metabolismo , Folhas de Planta/metabolismo , Raízes de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...