Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8055, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580709

RESUMO

Terpenes represent a promising renewable feedstock for the substitution of fossil resources in the synthesis of renewable platform chemicals, like diamines. This work describes the synthesis and full characterization of 1,4-p-menthane diamine (1,4-PMD) obtained from α-terpinene (1). A two-step procedure using dibenzyl azodicarboxylate (DBAD) and H2 as rather benign reagents was employed under comparatively mild conditions. Both C-N bonds were formed simultaneously during a visible-light mediated Diels-Alder reaction, which was investigated in batch or flow, avoiding regioselectivity issues during the amination steps that are otherwise typical for terpene chemistry. Heterogeneously catalyzed quadruple hydrogenation of the cycloadduct (2a) yielded 1,4­PMD (3). While the intermediate cycloadduct was shown to be distillable, the target diamine can be sublimed, offering sustainable purification methods.

2.
Commun Chem ; 6(1): 239, 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925584

RESUMO

The depletion of fossil resources as well as environmental concerns contribute to an increasing focus on finding more sustainable approaches for the synthesis of polymeric materials. In this work, a synthesis route towards non-isocyanate polyurethanes (NIPUs) using renewable starting materials is presented. Based on the terpenes limonene and carvone as renewable resources, five-membered cyclic carbonates are synthesized and ring-opened with allylamine, using thiourea compounds as benign and efficient organocatalysts. Thus, five renewable AA monomers are obtained, bearing one or two urethane units. Taking advantage of the terminal double bonds of these AA monomers, step-growth thiol-ene polymerization is performed using different dithiols, to yield NIPUs with molecular weights of above 10 kDa under mild conditions. Variation of the dithiol and amine leads to polymers with different properties, with Mn of up to 31 kDa and Tg's ranging from 1 to 29 °C.

3.
Commun Chem ; 6(1): 255, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980378

RESUMO

Tetraphenylethylenes (TPEs) are well-known for their aggregation-induced emission properties. The synthesis of TPE derivatives, as well as other highly substituted olefins, generally requires the use of hazardous reagents, such as metalorganic compounds, to overcome the high activation energies caused by the sterically congested double bond. Herein, we present an efficient and metal-free procedure for the synthesis of tetraarylethylenes via alkylidene-homocoupling of N-tosylhydrazones, derived from readily available benzophenones, in excellent yields. The method relies only on cheap and benign additives, i.e. elemental sulfur and potassium carbonate, and easily competes with other established procedures in terms of scope, yield and practicability. A mechanistic study revealed a diazo compound, a thioketone and a thiirane as key intermediates in the pathway of the reaction. Based on this, a modified method, which allows for selective alkylidene-cross-coupling, generating a broader scope of tri- and tetrasubstituted olefins in good yields, is showcased as well.

4.
Biomacromolecules ; 24(11): 5255-5264, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37839074

RESUMO

Increasing environmental pollution and petroleum resource depletion are important indicators for the necessary and inevitable replacement of fossil-based polymeric materials with more sustainable counterparts. Hence, the development of bio-based materials from renewable resources, such as cellulose, is of great importance. Herein, we introduce a rapid and homogeneous microwave assisted synthesis of high molecular weight (59 kDa ≤ Mn ≤ 116 kDa) short chain (mixed) cellulose esters (CEs) with variable acyl side chain length (2 ≤ C ≤ 8) by using a DMSO/TMG/CO2 switchable solvent system. Accordingly, (mixed) CEs were synthesized by implementing tetramethylguanidine (TMG) into a switchable solvent system (DMSO/TMG/CO2), followed by in-depth structural characterization via IR, 1H NMR, 13C NMR, and SEC. Examination of the structure-property relationships revealed a decrease in the glass transition temperature (177 °C ≤ Tg ≤ 204 °C), an increase in surface hydrophobicity, i.e., water contact angle (WCA) (65° ≤ WCA ≤ 98°), and a decrease of Young's modulus (7.51 MPa ≤ E ≤ 13.6 MPa), with longer alkyl side chains.


Assuntos
Celulose , Ésteres , Celulose/química , Ésteres/química , Solventes , Dimetil Sulfóxido/química , Dióxido de Carbono , Água
5.
ACS Omega ; 8(28): 25478-25486, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37483230

RESUMO

In this study, the combination of sequential solvent fractionation of technical Kraft lignin was followed by allylation of most OH functionalities to give highly functional thermoset resins. All lignin fractions were highly functionalized on the phenolic (≥95%) and carboxylic acid OH (≥85%) and to a significant extent on the aliphatic OH moieties (between 43 and 75%). The resins were subsequently cross-linked using thiol-ene chemistry. The high amount of allyl functionalities resulted in a high cross-link density. Dynamic mechanical analysis measurements showed that the thioether content, directly related to the allyl content, strongly affects the performance of these thermosets with a glass transition temperature (Tg) between 81 and 95 °C and with a storage modulus between 1.9 and 3.8 GPa for all thermosets. The lignin fractions and lignin-based thermosets' morphology, at the nanoscale, was studied by wide-angle X-ray scattering measurements. Two π-π stacking interactions were observed: sandwich (≈4.1-4.7 Å) and T-shaped (≈5.5-7.2 Å). The introduction of allyl functionalities weakens the T-shaped π-π stacking interactions. A new signal corresponding to a distance of ≈3.5 Å was observed in lignin-based thermosets, which was attributed to a thioether organized structure. At the same time, a lignin superstructure was observed with a distance/size corresponding to 7.9-17.5 Å in all samples.

6.
Sci Rep ; 12(1): 13878, 2022 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974033

RESUMO

Compound mixtures represent an alternative, additional approach to DNA and synthetic sequence-defined macromolecules in the field of non-conventional molecular data storage, which may be useful depending on the target application. Here, we report a fast and efficient method for information storage in molecular mixtures by the direct use of commercially available chemicals and thus, zero synthetic steps need to be performed. As a proof of principle, a binary coding language is used for encoding words in ASCII or black and white pixels of a bitmap. This way, we stored a 25 × 25-pixel QR code (625 bits) and a picture of the same size. Decoding of the written information is achieved via spectroscopic (1H NMR) or chromatographic (gas chromatography) analysis. In addition, for a faster and automated read-out of the data, we developed a decoding software, which also orders the data sets according to an internal "ordering" standard. Molecular keys or anticounterfeiting are possible areas of application for information-containing compound mixtures.


Assuntos
Armazenamento e Recuperação da Informação , Software , DNA/genética , Conjuntos de Dados como Assunto/estatística & dados numéricos , Armazenamento e Recuperação da Informação/métodos , Armazenamento e Recuperação da Informação/normas , Espectroscopia de Ressonância Magnética
7.
J Mater Chem B ; 10(20): 3895-3905, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35470847

RESUMO

New materials chemistries are urgently needed to overcome the limitations of existing biomedical materials in terms of preparation, functionality and versatility, and also in regards to their compatibility with biological environments. Here, we show that Passerini reactions are especially suited for the preparation of drug delivery materials, as with relatively few steps, polymers can be synthesized with functionality installed enabling drug conjugation and encapsulation, self-assembly into micellar or vesicular architectures, and with facile attachment triggerable chemistries. The polymers can be made with a variety of building blocks and assemble into nanoparticles, which are rapidly internalized in triple negative breast cancer (TNBC) cells. In addition, the polymers transport drug molecules efficiently through 3D cell cultures, and when designed with chemistries allowing pH-mediated release, exhibit greater efficacy against TNBC cells compared to the parent drug.


Assuntos
Nanopartículas , Pró-Fármacos , Neoplasias de Mama Triplo Negativas , Sistemas de Liberação de Medicamentos , Humanos , Polímeros/uso terapêutico , Pró-Fármacos/uso terapêutico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
8.
J Am Chem Soc ; 143(44): 18693-18702, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34714063

RESUMO

New sustainable concepts have to be developed to overcome the increasing problems of resource availability. Cellulose derivatives with tunable material properties are promising biobased alternatives to existing petroleum-derived polymeric materials. However, the chemical modification of cellulose is very challenging, often requiring harsh conditions and complex solubilization or activation steps. More sustainable procedures toward novel cellulose derivatives are therefore of great interest. Herein, we describe a novel concept combining two approaches, (i) tandem catalysis and (ii) cellulose derivatization, by applying a single catalyst for three transformations in the DMSO/DBU/CO2 switchable solvent system. Cellulose was functionalized with four different biobased isothiocyanates, which were formed in situ via a catalytic sulfurization of isocyanides with elemental sulfur, preventing the exposure and handling of the isothiocyanates. The degree of substitution of the formed O-cellulose thiocarbamates was shown to be controllable in a range of 0.52-2.16 by varying the equivalents of the reactants. All obtained products were analyzed by ATR-IR, 1H, 13C, and 31P NMR spectroscopy as well as size exclusion chromatography, elemental analysis, differential scanning calorimetry, and thermal gravimetric analysis. Finally, the tandem reaction approach was shown to be beneficial in terms of efficiency as well as sustainability compared to a stepwise synthesis. Recycling ratios ranging from 79.1% to 95.6% were obtained for the employed components, resulting in an E-factor of 2.95 for the overall process.

10.
Macromol Rapid Commun ; 42(9): e2000735, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33646627

RESUMO

Herein, a more practical and efficient synthesis protocol for the preparation of uniform rod-like oligo(1,4-phenylene ethynylene)s (OPE)s is presented. Applying an iterative reaction cycle consisting of a decarboxylative coupling reaction and a saponification of an alkynyl carboxylic ester, a uniform pentamer is obtained in ten steps with 14% overall yield. The copper-free conditions prevent homocoupling until the trimer stage, resulting in a significantly easier work-up of the products. Homocoupling is observed from the tetramer stage on, but a simple variation of the work-up procedure also yields the uniform tetramer and pentamer. A thorough comparison with the commonly used and described Sonogashira approach reveals that with the new presented strategy, OPEs can be built in similar overall yield, but easier purification and in a quarter of the time. All oligomers are fully characterized by proton and carbon nuclear magnetic resonance spectroscopy (NMR), mass spectrometry (MS), size-exclusion chromatography (SEC), and infrared spectroscopy (IR).


Assuntos
Espectroscopia de Ressonância Magnética , Cromatografia em Gel
11.
Angew Chem Int Ed Engl ; 60(37): 20144-20165, 2021 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-33617111

RESUMO

Oils and fats of vegetable and animal origin remain an important renewable feedstock for the chemical industry. Their industrial use has increased during the last 10 years from 31 to 51 million tonnes annually. Remarkable achievements made in the field of oleochemistry in this timeframe are summarized herein, including the reduction of fatty esters to ethers, the selective oxidation and oxidative cleavage of C-C double bonds, the synthesis of alkyl-branched fatty compounds, the isomerizing hydroformylation and alkoxycarbonylation, and olefin metathesis. The use of oleochemicals for the synthesis of a great variety of polymeric materials has increased tremendously, too. In addition to lipases and phospholipases, other enzymes have found their way into biocatalytic oleochemistry. Important achievements have also generated new oil qualities in existing crop plants or by using microorganisms optimized by metabolic engineering.

12.
ACS Macro Lett ; 10(3): 313-320, 2021 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35549068

RESUMO

Partly or fully renewable (co)polymers are gaining interest in both academia and industry. Polyethylene is a widely used polymer, classically derived from fossil fuels, with a high versatility stemming from the introduction of comonomers altering the mechanical properties. The introduction of renewable functionalities into this polymer is highly attractive to obtain functional, tunable, and at least partially renewable polyethylenes. We herein report the introduction of biosourced cyclic carbonates into polyethylene using organometallic-mediated radical polymerization under mild conditions. Molecular weights of up to 14 600 g mol-1 with dispersities as low as 1.19 were obtained, and the cyclic carbonate content could be easily tuned by the ethylene pressure during the polymerization. As a proof of concept, the hydrolysis of the cyclic carbonates of a representative copolymer was explored, and it provided polyethylene-bearing vicinal diols, with a hydrolysis degree of 71%. Given the multitude of chemoselective modifications possible on cyclic carbonates as well as the fact that many allylic- and alkylidene-type cyclic carbonates are accessible from renewable resources, this work opens up an avenue for the design of functional and more sustainable polyethylenes.


Assuntos
Carbonatos , Polietileno , Peso Molecular , Polimerização , Polímeros
13.
Macromol Rapid Commun ; 42(6): e2000467, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33047427

RESUMO

Linear uniform oligomers synthesized via a two-step iterative cycle are postmodified with uniform octaethylene glycol monomethyl ether and finally coupled via azide-alkyne cycloaddition to yield uniform star-shaped block macromolecules with a mass ranging from 10 to 14 kDa. Each of the molecules is carefully characterized by NMR, electrospray ionization mass spectrometry (ESI-MS), and size exclusion chromatography (SEC) to underline their purity as well as their uniformity. The obtained star-shaped macromolecules are investigated in their ability to encapsulate dye molecules by carrying out qualitative solid-liquid phase transfer experiments.


Assuntos
Polietilenoglicóis , Polímeros , Substâncias Macromoleculares , Espectroscopia de Ressonância Magnética , Micelas
14.
Macromol Rapid Commun ; 42(6): e2000321, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33249682

RESUMO

The versatility of the Passerini three component reaction (Passerini-3CR) is herein exploited for the synthesis of an amphiphilic diblock copolymer, which self-assembles into polymersomes. Carboxy-functionalized poly(ethylene glycol) methyl ether is reacted with AB-type bifunctional monomers and tert-butyl isocyanide in a single process via Passerini-3CR. The resultant diblock copolymer (P1) is obtained in good yield and molar mass dispersity and is well tolerated in model cell lines. The Passerini-3CR versatility and reproducibility are shown by the synthesis of P2, P3, and P4 copolymers. The ability of the Passerini P1 polymersomes to incorporate hydrophilic molecules is verified by loading doxorubicin hydrochloride in P1DOX polymersomes. The flexibility of the synthesis is further demonstrated by simple post-functionalization with a dye, Cyanine-5 (Cy5). The obtained P1-Cy5 polymersomes rapidly internalize in 2D cell monolayers and penetrate deep into 3D spheroids of MDA-MB-231 triple-negative breast cancer cells. P1-Cy5 polymersomes injected systemically in healthy mice are well tolerated and no visible adverse effects are seen under the conditions tested. These data demonstrate that new, biodegradable, biocompatible polymersomes having properties suitable for future use in drug delivery can be easily synthesized by the Passerini-3CR.


Assuntos
Sistemas de Liberação de Medicamentos , Polímeros , Animais , Doxorrubicina/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Reprodutibilidade dos Testes
15.
Macromol Rapid Commun ; 42(3): e2000440, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32935889

RESUMO

In this work, a straightforward and efficient synthesis approach to renewable non-isocyanate polyurethanes (NIPUs) is described. For this purpose, suitable and renewable carbamate monomers, possessing two double bonds, are synthesized from hydroxamic fatty acid derivatives via the Lossen rearrangement in a one-step synthesis, and sustainable dithiols are synthesized from dialkenes derived from renewable feedstock (i.e., limonene and 1,4-cyclohexadiene). Subsequently, the comonomers are polymerized with the highly efficient thiol-ene reaction to produce NIPUs with Mn values up to 26 kg mol-1 bearing thioether linkages. The main side product of the Lossen rearrangement, a symmetric urea, can also be polymerized in the same fashion. Important in the view of sustainability, the monomer mixture can also be used directly, without separation. The obtained polymers are characterized by NMR, attenuated total reflection-infrared spectroscopy, differential scanning calorimetry, and size exclusion chromatography.


Assuntos
Isocianatos , Poliuretanos , Carbamatos , Polimerização , Polímeros
16.
Biomacromolecules ; 22(2): 586-593, 2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33289549

RESUMO

Searching for more sustainable materials as an alternative to petroleum-based products is of increasing interest due to different environmental issues. Cellulose and fatty acids are two very promising candidates for biobased material design. Herein, we report a sustainable synthesis of fatty acid cellulose esters (FACEs) via transesterification of cellulose with methyl-10-undecenoate in a CO2-based switchable solvent system. FACEs with a degree of substitution between 0.70 and 1.97 were synthesized by simple variation of reaction parameters and characterized in detail. Subsequently, a FACE with a degree of substitution (DS) of 0.70 was modified via thiol-ene reaction, demonstrating an efficient and versatile method to tune the structure and properties of the new cellulose derivatives. Films were produced from each sample via solvent casting, and their mechanical properties were examined using tensile tests. Elastic moduli (E) ranging from 90 to 635 MPa and elongations at break between 2 and 23% were observed, depending on the DS of the FACE and the type of thiol employed for the modification. Finally, contact angle measurements confirmed an increase in the surface hydrophobicity (75-91°) for the thiol-ene-modified samples.


Assuntos
Celulose , Ácidos Graxos , Dióxido de Carbono , Solventes , Compostos de Sulfidrila
17.
Macromol Rapid Commun ; 41(16): e2000266, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32686239

RESUMO

The recent focus of media and governments on renewability, green chemistry, and circular economy has led to a surge in the synthesis of renewable monomers and polymers. In this review, focussing on renewable monomers for reversible deactivation radical polymerizations (RDRP), it is highlighted that for the majority of the monomers and polymers reported, the claim to renewability is not always accurate. By closely examining the sustainability of synthetic routes and the renewability of starting materials, fully renewable monomers are identified and discussed in terms of sustainability, polymerization behavior, and properties obtained after polymerization. The holistic discussion considering the overall preparation process of polymers, that is, monomer syntheses, origin of starting materials, solvents used, the type of RDRP technique utilized, and the purification method, allows to highlight certain topics which need to be addressed in order to progress toward not only (partially) renewable, but sustainable monomers and polymers using RDRPs.


Assuntos
Polímeros , Polimerização , Solventes
18.
Front Chem ; 8: 126, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32175310

RESUMO

Beyond their applications in organic light-emitting diodes (OLEDs), thermally activated delayed fluorescence (TADF) materials can also make good photonic markers. Time-gated measurement of their delayed emission enables "background-free" imaging in, for example, biological systems, because no naturally-occurring compounds exhibit such long-lived emission. Attaching a strongly-absorbing antenna, such as a phenylene ethynylene oligomer, to the TADF core would be of interest to increase their brightness as photonic markers. With this motivation, we study a sequence of TADF-oligomer conjugates with oligomers of varying length and show that, even when the absorption of the oligomer is almost resonant with the charge-transfer absorption of the TADF core, the antenna transfers energy to the TADF core. We study this series of compounds with time resolved emission and transient absorption spectroscopy and find that the delayed fluorescence is essentially turned-off for the longer antennae. Interestingly, we find that the turn-off of the delayed fluorescence is not caused by quenching of the TADF charge-transfer triplet state due to triplet energy transfer of the lower-lying triplet state to the antenna, but must be associated with a decrease in the reverse intersystem crossing rate. These results are of relevance for the further development of TADF "dyes" and also, in the broader context, for understanding the dynamics of TADF molecules in the vicinity of energy donors/acceptors (i.e., in fluorescent OLEDs wherein TADF molecules are used as an assistant dopant).

19.
Commun Chem ; 3(1): 184, 2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36703345

RESUMO

In recent years, the field of molecular data storage has emerged from a niche to a vibrant research topic. Herein, we describe a simultaneous and automated read-out of data stored in mixtures of sequence-defined oligomers. Therefore, twelve different sequence-defined tetramers and three hexamers with different mass markers and side chains are successfully synthesised via iterative Passerini three-component reactions and subsequent deprotection steps. By programming a straightforward python script for ESI-MS/MS analysis, it is possible to automatically sequence and thus read-out the information stored in these oligomers within one second. Most importantly, we demonstrate that the use of mass-markers as starting compounds eases MS/MS data interpretation and furthermore allows the unambiguous reading of sequences of mixtures of sequence-defined oligomers. Thus, high data storage capacity considering the field of synthetic macromolecules (up to 64.5 bit in our examples) can be obtained without the need of synthesizing long sequences, but by mixing and simultaneously analysing shorter sequence-defined oligomers.

20.
Commun Chem ; 3(1): 63, 2020 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-36703457

RESUMO

Sequence-defined macromolecules offer applications in the field of data storage. Challenges include synthesising precise and pure sequences, reading stored information and increasing data storage capacity. Herein, the synthesis of dual sequence-defined oligomers and their application for data storage is demonstrated. While applying the well-established Passerini three-component reaction, the degree of definition of the prepared monodisperse macromolecules is improved compared to previous reports by utilising nine specifically designed isocyanide monomers to introduce backbone definition. The monomers are combined with various aldehyde components to synthesise dual-sequence defined oligomers. Thus, the side chains and the backbones of these macromolecules can be varied independently, exhibiting increased molecular diversity and hence data storage capacity per repeat unit. In case of a dual sequence-defined pentamer, 33 bits are achieved in a single molecule. The oligomers are obtained in multigram scale and excellent purity. Sequential read-out by tandem ESI-MS/MS verifies the high data storage capacity of the prepared oligomers per repeat unit in comparison to other sequence defined macromolecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...