Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Blood Cancer J ; 12(8): 122, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35995769

RESUMO

The prognosis of AML patients with adverse genetics, such as a complex, monosomal karyotype and TP53 lesions, is still dismal even with standard chemotherapy. DNA-hypomethylating agent monotherapy induces an encouraging response rate in these patients. When combined with decitabine (DAC), all-trans retinoic acid (ATRA) resulted in an improved response rate and longer overall survival in a randomized phase II trial (DECIDER; NCT00867672). The molecular mechanisms governing this in vivo synergism are unclear. We now demonstrate cooperative antileukemic effects of DAC and ATRA on AML cell lines U937 and MOLM-13. By RNA-sequencing, derepression of >1200 commonly regulated transcripts following the dual treatment was observed. Overall chromatin accessibility (interrogated by ATAC-seq) and, in particular, at motifs of retinoic acid response elements were affected by both single-agent DAC and ATRA, and enhanced by the dual treatment. Cooperativity regarding transcriptional induction and chromatin remodeling was demonstrated by interrogating the HIC1, CYP26A1, GBP4, and LYZ genes, in vivo gene derepression by expression studies on peripheral blood blasts from AML patients receiving DAC + ATRA. The two drugs also cooperated in derepression of transposable elements, more effectively in U937 (mutated TP53) than MOLM-13 (intact TP53), resulting in a "viral mimicry" response. In conclusion, we demonstrate that in vitro and in vivo, the antileukemic and gene-derepressive epigenetic activity of DAC is enhanced by ATRA.


Assuntos
Leucemia Mieloide Aguda , Decitabina/farmacologia , Decitabina/uso terapêutico , Humanos , Cariótipo , Cariotipagem , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Tretinoína/farmacologia , Tretinoína/uso terapêutico
2.
Clin Epigenetics ; 13(1): 77, 2021 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-33845873

RESUMO

BACKGROUND: Mutations in the EZH2 gene are recurrently found in patients with myeloid neoplasms and are associated with a poor prognosis. We aimed to characterize genetic and epigenetic alterations of EZH2 in 58 patients (51 with acute myeloid leukemia and 7 with myelodysplastic or myeloproliferative neoplasms) by integrating data on EZH2 mutational status, co-occurring mutations, and EZH2 copy number status with EZH2 protein expression, histone H3K27 trimethylation, and EZH2 promoter methylation. RESULTS: EZH2 was mutated in 6/51 acute myeloid leukemia patients (12%) and 7/7 patients with other myeloid neoplasms. EZH2 mutations were not overrepresented in patients with chromosome 7q deletions or losses. In acute myeloid leukemia patients, EZH2 mutations frequently co-occurred with CEBPA (67%), ASXL1 (50%), TET2 and RAD21 mutations (33% each). In EZH2-mutated patients with myelodysplastic or myeloproliferative neoplasms, the most common co-mutations were in ASXL1 (100%), NRAS, RUNX1, and STAG2 (29% each). EZH2 mutations were associated with a significant decrease in EZH2 expression (p = 0.0002), which was similar in patients with chromosome 7 aberrations and patients with intact chromosome 7. An association between EZH2 protein expression and H3K27 trimethylation was observed in EZH2-unmutated patients (R2 = 0.2, p = 0.01). The monoallelic state of EZH2 was not associated with EZH2 promoter hypermethylation. In multivariable analyses, EZH2 mutations were associated with a trend towards an increased risk of death (hazard ratio 2.51 [95% confidence interval 0.87-7.25], p = 0.09); similarly, low EZH2 expression was associated with elevated risk (hazard ratio 2.54 [95% confidence interval 1.07-6.04], p = 0.04). CONCLUSIONS: Perturbations of EZH2 activity in AML/MDS occur on different, genetic and non-genetic levels. Both low EZH2 protein expression and, by trend, EZH2 gene mutations predicted inferior overall survival of AML patients receiving standard chemotherapy.


Assuntos
Variações do Número de Cópias de DNA/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Expressão Gênica/genética , Histonas/genética , Leucemia Mieloide Aguda/genética , Mutação/genética , Síndromes Mielodisplásicas/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Adulto Jovem
4.
Cancer Res ; 81(4): 834-846, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33203699

RESUMO

Hypomethylating agents (HMA) have become the backbone of nonintensive acute myeloid leukemia/myelodysplastic syndrome (AML/MDS) treatment, also by virtue of their activity in patients with adverse genetics, for example, monosomal karyotypes, often with losses on chromosome 7, 5, or 17. No comparable activity is observed with cytarabine, a cytidine analogue without DNA-hypomethylating properties. As evidence exists for compounding hypermethylation and gene silencing of hemizygous tumor suppressor genes (TSG), we thus hypothesized that this effect may preferentially be reversed by the HMAs decitabine and azacitidine. An unbiased RNA-sequencing approach was developed to interrogate decitabine-induced transcriptome changes in AML cell lines with or without a deletion of chromosomes 7q, 5q or 17p. HMA treatment preferentially upregulated several hemizygous TSG in this genomic region, significantly derepressing endogenous retrovirus (ERV)3-1, with promoter demethylation, enhanced chromatin accessibility, and increased H3K4me3 levels. Decitabine globally reactivated multiple transposable elements, with activation of the dsRNA sensor RIG-I and interferon regulatory factor (IRF)7. Induction of ERV3-1 and RIG-I mRNA was also observed during decitabine treatment in vivo in serially sorted peripheral blood AML blasts. In patient-derived monosomal karyotype AML murine xenografts, decitabine treatment resulted in superior survival rates compared with cytarabine. Collectively, these data demonstrate preferential gene derepression and ERV reactivation in AML with chromosomal deletions, providing a mechanistic explanation that supports the clinical observation of superiority of HMA over cytarabine in this difficult-to-treat patient group. SIGNIFICANCE: These findings unravel the molecular mechanism underlying the intriguing clinical activity of HMAs in AML/MDS patients with chromosome 7 deletions and other monosomal karyotypes.See related commentary by O'Hagan et al., p. 813.


Assuntos
Leucemia Mieloide Aguda , Animais , Azacitidina/farmacologia , Decitabina/farmacologia , Epigênese Genética , Humanos , Cariótipo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Camundongos , Monossomia
5.
Leukemia ; 33(4): 945-956, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30470836

RESUMO

DNA methyltransferase inhibitors (DNMTi) approved for older AML patients are clinically tested in combination with histone deacetylase inhibitors (HDACi). The mechanism of action of these drugs is still under debate. In colon cancer cells, 5-aza-2'-deoxycytidine (DAC) can downregulate oncogenes and metabolic genes by reversing gene body DNA methylation, thus implicating gene body methylation as a novel drug target. We asked whether DAC-induced gene body demethylation in AML cells is also associated with gene repression, and whether the latter is enhanced by HDACi.Transcriptome analyses revealed that a combined treatment with DAC and the HDACi panobinostat or valproic acid affected significantly more transcripts than the sum of the genes regulated by either treatment alone, demonstrating a quantitative synergistic effect on genome-wide expression in U937 cells. This effect was particularly striking for downregulated genes. Integrative methylome and transcriptome analyses showed that a massive downregulation of genes, including oncogenes (e.g., MYC) and epigenetic modifiers (e.g., KDM2B, SUV39H1) often overexpressed in cancer, was associated predominantly with gene body DNA demethylation and changes in acH3K9/27. These findings have implications for the mechanism of action of combined epigenetic treatments, and for a better understanding of responses in trials where this approach is clinically tested.


Assuntos
Metilação de DNA , Decitabina/farmacologia , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Regulação Neoplásica da Expressão Gênica , Inibidores de Histona Desacetilases/farmacologia , Leucemia Mieloide Aguda/genética , Biomarcadores Tumorais/genética , Metilases de Modificação do DNA/antagonistas & inibidores , Desmetilação , Regulação para Baixo , Epigênese Genética , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Panobinostat/farmacologia , Ácido Valproico/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...