Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37145169

RESUMO

Diffuse midline gliomas (DMG), including diffuse intrinsic pontine gliomas (DIPGs), are the most lethal of childhood cancers. Palliative radiotherapy is the only established treatment, with median patient survival of 9-11 months. ONC201 is a DRD2 antagonist and ClpP agonist that has shown preclinical and emerging clinical efficacy in DMG. However, further work is needed to identify the mechanisms of response of DIPGs to ONC201 treatment and to determine whether recurring genomic features influence response. Using a systems-biological approach, we showed that ONC201 elicits potent agonism of the mitochondrial protease ClpP to drive proteolysis of electron transport chain and tricarboxylic acid cycle proteins. DIPGs harboring PIK3CA-mutations showed increased sensitivity to ONC201, while those harboring TP53-mutations were more resistant. Metabolic adaptation and reduced sensitivity to ONC201 was promoted by redox-activated PI3K/Akt signaling, which could be counteracted using the brain penetrant PI3K/Akt inhibitor, paxalisib. Together, these discoveries coupled with the powerful anti-DIPG/DMG pharmacokinetic and pharmacodynamic properties of ONC201 and paxalisib have provided the rationale for the ongoing DIPG/DMG phase II combination clinical trial NCT05009992.

2.
Cancer Res ; : OF1-OF17, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37195023

RESUMO

Diffuse midline gliomas (DMG), including diffuse intrinsic pontine gliomas (DIPG), are the most lethal of childhood cancers. Palliative radiotherapy is the only established treatment, with median patient survival of 9 to 11 months. ONC201 is a DRD2 antagonist and ClpP agonist that has shown preclinical and emerging clinical efficacy in DMG. However, further work is needed to identify the mechanisms of response of DIPGs to ONC201 treatment and to determine whether recurring genomic features influence response. Using a systems-biological approach, we showed that ONC201 elicits potent agonism of the mitochondrial protease ClpP to drive proteolysis of electron transport chain and tricarboxylic acid cycle proteins. DIPGs harboring PIK3CA mutations showed increased sensitivity to ONC201, whereas those harboring TP53 mutations were more resistant. Metabolic adaptation and reduced sensitivity to ONC201 was promoted by redox-activated PI3K/Akt signaling, which could be counteracted using the brain penetrant PI3K/Akt inhibitor, paxalisib. Together, these discoveries coupled with the powerful anti-DIPG/DMG pharmacokinetic and pharmacodynamic properties of ONC201 and paxalisib have provided the rationale for the ongoing DIPG/DMG phase II combination clinical trial NCT05009992. SIGNIFICANCE: PI3K/Akt signaling promotes metabolic adaptation to ONC201-mediated disruption of mitochondrial energy homeostasis in diffuse intrinsic pontine glioma, highlighting the utility of a combination treatment strategy using ONC201 and the PI3K/Akt inhibitor paxalisib.

3.
Cancers (Basel) ; 14(21)2022 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-36358750

RESUMO

Epithelial ovarian cancers (EOC) are often diagnosed at an advanced stage with carcinomatosis and a poor prognosis. First-line treatment is based on a chemotherapy regimen combining a platinum-based drug and a taxane-based drug along with surgery. More than half of the patients will have concern about a recurrence. To improve the outcomes, new therapeutics are needed, and diverse strategies, such as immunotherapy, are currently being tested in EOC. To better understand the global immune contexture in EOC, several studies have been performed to decipher the landscape of tumor-infiltrating lymphocytes (TILs). CD8+ TILs are usually considered effective antitumor immune effectors that immune checkpoint inhibitors can potentially activate to reject tumor cells. To synthesize the knowledge of TILs in EOC, we conducted a review of studies published in MEDLINE or EMBASE in the last 10 years according to the PRISMA guidelines. The description and role of TILs in EOC prognosis are reviewed from the published data. The links between TILs, DNA repair deficiency, and ICs have been studied. Finally, this review describes the role of TILs in future immunotherapy for EOC.

4.
Cancers (Basel) ; 14(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36230504

RESUMO

Cancer progression occurs in concomitance with a profound remodeling of the cellular microenvironment. Far from being a mere passive event, the re-orchestration of interactions between the various cell types surrounding tumors highly contributes to the progression of the latter. Tumors notably recruit and stimulate the sprouting of new blood vessels through a process called neo-angiogenesis. Beyond helping the tumor cope with an increased metabolic demand associated with rapid growth, this also controls the metastatic dissemination of cancer cells and the infiltration of immune cells in the tumor microenvironment. To decipher this critical interplay for the clinical progression of tumors, the research community has developed several valuable models in the last decades. This review offers an overview of the various instrumental solutions currently available, including microfluidic chips, co-culture models, and the recent rise of organoids. We highlight the advantages of each technique and the specific questions they can address to better understand the tumor immuno-angiogenic ecosystem. Finally, we discuss this development field's fundamental and applied perspectives.

5.
Cancers (Basel) ; 13(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34771714

RESUMO

High-grade gliomas represent the most lethal class of pediatric tumors, and their resistance to both radio- and chemotherapy is associated with a poor prognosis. Recurrent mutations affecting histone genes drive the tumorigenesis of some pediatric high-grade gliomas, and H3K27M mutations are notably characteristic of a subtype of gliomas called DMG (Diffuse Midline Gliomas). This dominant negative mutation impairs H3K27 trimethylation, leading to profound epigenetic modifications of genes expression. Even though this mutation was described as a driver event in tumorigenesis, its role in tumor cell resistance to treatments has not been deciphered so far. To tackle this issue, we expressed the H3.3K27M mutated histone in three initially H3K27-unmutated pediatric glioma cell lines, Res259, SF188, and KNS42. First, we validated these new H3.3K27M-expressing models at the molecular level and showed that K27M expression is associated with pleiotropic effects on the transcriptomic signature, largely dependent on cell context. We observed that the mutation triggered an increase in cell growth in Res259 and SF188 cells, associated with higher clonogenic capacities. Interestingly, we evidenced that the mutation confers an increased resistance to ionizing radiations in Res259 and KNS42 cells. Moreover, we showed that H3.3K27M mutation impacts the sensitivity of Res259 cells to specific drugs among a library of 80 anticancerous compounds. Altogether, these data highlight that, beyond its tumorigenic role, H3.3K27M mutation is strongly involved in pediatric glioma cells' resistance to therapies, likely through transcriptomic reprogramming.

6.
Front Endocrinol (Lausanne) ; 12: 742215, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34539584

RESUMO

Radiotherapy is an important component of cancer treatment, with approximately 50% of all cancer patients receiving radiation therapy during their course of illness. Nevertheless, solid tumors frequently exhibit hypoxic areas, which can hinder therapies efficacy, especially radiotherapy one. Indeed, hypoxia impacts the six parameters governing the radiotherapy response, called the « six Rs of radiation biology ¼ (for Radiosensitivity, Repair, Repopulation, Redistribution, Reoxygenation, and Reactivation of anti-tumor immune response), by inducing pleiotropic cellular adaptions, such as cell metabolism rewiring, epigenetic landscape remodeling, and cell death weakening, with significant clinical repercussions. In this review, according to the six Rs, we detail how hypoxia, and associated mechanisms and pathways, impact the radiotherapy response of solid tumors and the resulting clinical implications. We finally illustrate it in hypoxic endocrine cancers through a focus on anaplastic thyroid carcinomas.


Assuntos
Hipóxia/etiologia , Neoplasias/metabolismo , Neoplasias/radioterapia , Radiobiologia , Animais , Humanos , Hipóxia/metabolismo , Consumo de Oxigênio , Tolerância a Radiação
7.
Cells ; 10(6)2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203746

RESUMO

Tremendous data have been accumulated in the effort to understand chemoresistance of triple negative breast cancer (TNBC). However, modifications in cancer cells surviving combined and sequential treatment still remain poorly described. In order to mimic clinical neoadjuvant treatment, we first treated MDA-MB-231 and SUM159-PT TNBC cell lines with epirubicin and cyclophosphamide for 2 days, and then with paclitaxel for another 2 days. After 4 days of recovery, persistent cells surviving the treatment were characterized at both cellular and molecular level. Persistent cells exhibited increased growth and were more invasive in vitro and in zebrafish model. Persistent cells were enriched for vimentinhigh sub-population, vimentin knockdown using siRNA approach decreased the invasive and sphere forming capacities as well as Akt phosphorylation in persistent cells, indicating that vimentin is involved in chemotherapeutic treatment-induced enhancement of TNBC aggressiveness. Interestingly, ectopic vimentin overexpression in native cells increased cell invasion and sphere formation as well as Akt phosphorylation. Furthermore, vimentin overexpression alone rendered the native cells resistant to the drugs, while vimentin knockdown rendered them more sensitive to the drugs. Together, our data suggest that vimentin could be considered as a new targetable player in the ever-elusive status of drug resistance and recurrence of TNBC.


Assuntos
Resistencia a Medicamentos Antineoplásicos/fisiologia , Neoplasias de Mama Triplo Negativas/metabolismo , Vimentina/fisiologia , Animais , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Ciclofosfamida/farmacologia , Modelos Animais de Doenças , Tratamento Farmacológico/métodos , Epirubicina/farmacologia , Transição Epitelial-Mesenquimal , Feminino , Humanos , Terapia Neoadjuvante/métodos , Invasividade Neoplásica/patologia , Recidiva Local de Neoplasia , Paclitaxel/uso terapêutico , Neoplasias de Mama Triplo Negativas/patologia , Vimentina/metabolismo , Peixe-Zebra
8.
Cancers (Basel) ; 13(8)2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33918823

RESUMO

Hypoxia is a hallmark of many solid tumors and is associated with resistance to anticancer treatments. Hypoxia-activated prodrugs (HAPs) were developed to target the hypoxic regions of these tumors. Among 2nd generation HAPs, Evofosfamide (Evo, also known as TH-302) exhibits preclinical and clinical activities against adult glioblastoma. In this study, we evaluated its potential in the field of pediatric neuro-oncology. We assessed the efficacy of Evo in vitro as a single drug, or in combination with SN38, doxorubicin, and etoposide, against three pediatric high-grade glioma (pHGG) and three diffuse intrinsic pontine glioma (DIPG) cell lines under hypoxic conditions. We also investigated radio-sensitizing effects using clonogenic assays. Evo inhibited the growth of all cell lines, mainly under hypoxia. We also highlighted a significant synergism between Evo and doxorubicin, SN38, or etoposide. Finally, Evo radio-sensitized the pHGG cell line tested, both with fractionated and single-dose irradiation schedules. Altogether, we report here the first preclinical proof of evidence about Evofosfamide efficiency against hypoxic pHGG and DIPG cells. Since such tumors are highly hypoxic, and Evo potentiates the effect of ionizing radiation and chemotherapy, it appears as a promising therapeutic strategy for children with brain tumors.

9.
Med Sci (Paris) ; 37(2): 159-166, 2021 Feb.
Artigo em Francês | MEDLINE | ID: mdl-33591259

RESUMO

Pediatric brain cancers represent the most frequent solid tumors and the leading cause of cancer-driven mortality in children. Pediatric High Grade Gliomas display a very poor prognosis. Among these, DIPG (Diffuse Intrinsic Pontine Gliomas), localized to the brain stem, cannot benefit from a total exeresis due to this critical location and to their highly infiltrating nature. Radiotherapy remains the standard treatment against these tumors for almost five decades, and attempts to improve the prognosis of patients with chemotherapy or targeted therapies have failed. Thanks to the rise of high throughput sequencing, the knowledge of molecular alterations in pediatric gliomas strongly progressed and allowed to highlight distinct biomolecular entities and to establish more accurate diagnoses. In this review, we summarize this new information and the perspectives that it brings for clinical strategies.


TITLE: L'art de la guerre appliqué aux DIPG - Connais ton ennemi. ABSTRACT: Les tumeurs cérébrales pédiatriques représentent la principale cause de mortalité par cancer chez l'enfant. Alors que l'exérèse complète a une valeur pronostique dans certains gliomes de haut grade, les DIPG (diffuse intrinsic pontine gliomas) ne peuvent en bénéficier du fait d'une localisation critique au niveau du tronc cérébral et de leur caractère infiltrant. La radiothérapie demeure le traitement de référence contre ces tumeurs depuis bientôt cinquante ans, et les tentatives pour améliorer le pronostic vital des patients à l'aide de chimiothérapies ou de thérapies ciblées se sont révélées infructueuses. La connaissance des altérations moléculaires dans ces gliomes a fortement progressé cette dernière décennie, grâce aux progrès du séquençage à haut débit. Cela a permis de révéler des entités distinctes au niveau moléculaire et de préciser des diagnostics discriminants. Dans cette revue, nous faisons le point sur ces nouvelles connaissances et les perspectives qu'elles apportent en termes de stratégies cliniques.


Assuntos
Neoplasias Encefálicas/terapia , Glioma/terapia , Oncologia/tendências , Idade de Início , Neoplasias Encefálicas/epidemiologia , Neoplasias Encefálicas/patologia , Criança , Procedimentos Clínicos/tendências , Glioma/epidemiologia , Glioma/patologia , Humanos , Oncologia/métodos , Prognóstico
10.
Cancers (Basel) ; 12(7)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610610

RESUMO

Breast cancer is a major public health problem and the leading world cause of women death by cancer. Both the recurrence and mortality of breast cancer are mainly caused by the formation of metastasis. The long non-coding RNA H19, the precursor of miR-675, is involved in breast cancer development. The aim of this work was to determine the implication but, also, the relative contribution of H19 and miR-675 to the enhancement of breast cancer metastatic potential. We showed that both H19 and miR-675 increase the invasive capacities of breast cancer cells in xenografted transgenic zebrafish models. In vitro, H19 and miR-675 enhance the cell migration and invasion, as well as colony formation. H19 seems to induce the epithelial-to-mesenchymal transition (EMT), with a decreased expression of epithelial markers and an increased expression of mesenchymal markers. Interestingly, miR-675 simultaneously increases the expression of both epithelial and mesenchymal markers, suggesting the induction of a hybrid phenotype or mesenchymal-to-epithelial transition (MET). Finally, we demonstrated for the first time that miR-675, like its precursor H19, increases the stemness properties of breast cancer cells. Altogether, our data suggest that H19 and miR-675 could enhance the aggressiveness of breast cancer cells through both common and different mechanisms.

11.
Fluids Barriers CNS ; 17(1): 37, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32487241

RESUMO

BACKGROUND: Pediatric diffuse intrinsic pontine glioma (DIPG) represents one of the most devastating and lethal brain tumors in children with a median survival of 12 months. The high mortality rate can be explained by the ineligibility of patients to surgical resection due to the diffuse growth pattern and midline localization of the tumor. While the therapeutic strategies are unfortunately palliative, the blood-brain barrier (BBB) is suspected to be responsible for the treatment inefficiency. Located at the brain capillary endothelial cells (ECs), the BBB has specific properties to tightly control and restrict the access of molecules to the brain parenchyma including chemotherapeutic compounds. However, these BBB specific properties can be modified in a pathological environment, thus modulating brain exposure to therapeutic drugs. Hence, this study aimed at developing a syngeneic human blood-brain tumor barrier model to understand how the presence of DIPG impacts the structure and function of brain capillary ECs. METHODS: A human syngeneic in vitro BBB model consisting of a triple culture of human (ECs) (differentiated from CD34+-stem cells), pericytes and astrocytes was developed. Once validated in terms of BBB phenotype, this model was adapted to develop a blood-brain tumor barrier (BBTB) model specific to pediatric DIPG by replacing the astrocytes by DIPG-007, -013 and -014 cells. The physical and metabolic properties of the BBTB ECs were analyzed and compared to the BBB ECs. The permeability of both models to chemotherapeutic compounds was evaluated. RESULTS: In line with clinical observation, the integrity of the BBTB ECs remained intact until 7 days of incubation. Both transcriptional expression and activity of efflux transporters were not strongly modified by the presence of DIPG. The permeability of ECs to the chemotherapeutic drugs temozolomide and panobinostat was not affected by the DIPG environment. CONCLUSIONS: This original human BBTB model allows a better understanding of the influence of DIPG on the BBTB ECs phenotype. Our data reveal that the chemoresistance described for DIPG does not come from the development of a "super BBB". These results, validated by the absence of modification of drug transport through the BBTB ECs, point out the importance of understanding the implication of the different protagonists in the pathology to have a chance to significantly improve treatment efficiency.


Assuntos
Antineoplásicos/farmacologia , Barreira Hematoencefálica , Neoplasias Encefálicas , Glioma Pontino Intrínseco Difuso , Resistencia a Medicamentos Antineoplásicos , Modelos Neurológicos , Barreira Hematoencefálica/efeitos dos fármacos , Neoplasias Encefálicas/tratamento farmacológico , Células Cultivadas , Glioma Pontino Intrínseco Difuso/tratamento farmacológico , Células Endoteliais , Humanos , Panobinostat/farmacologia , Temozolomida/farmacologia
12.
Proteomics ; 19(21-22): e1800454, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31430054

RESUMO

Many solid cancers are hierarchically organized with a small number of cancer stem cells (CSCs) able to regrow a tumor, while their progeny lacks this feature. Breast CSC is known to contribute to therapy resistance. The study of those cells is usually based on their cell-surface markers like CD44high /CD24low/neg or their aldehyde dehydrogenase (ALDH) activity. However, these markers cannot be used to track the dynamics of CSC. Here, a transcriptomic analysis is performed to identify segregating gene expression in CSCs and non-CSCs, sorted by Aldefluor assay. It is observed that among ALDH-associated genes, only ALDH1A1 isoform is increased in CSCs. A CSC reporter system is then developed by using a far red-fluorescent protein (mNeptune) under the control of ALDH1A1 promoter. mNeptune-positive cells exhibit higher sphere-forming capacity, tumor formation, and increased resistance to anticancer therapies. These results indicate that the reporter identifies cells with stemness characteristics. Moreover, live tracking of cells in a microfluidic system reveals a higher extravasation potential of CSCs. Live tracking of non-CSCs under irradiation treatment show, for the first time, live reprogramming of non-CSCs into CSCs. Therefore, the reporter will allow for cell tracking to better understand the implication of CSCs in breast cancer development and recurrence.


Assuntos
Família Aldeído Desidrogenase 1/genética , Neoplasias da Mama/genética , Rastreamento de Células , Perfilação da Expressão Gênica , Genes Reporter , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Retinal Desidrogenase/genética , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Reprogramação Celular/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genoma Humano , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos Endogâmicos NOD , Camundongos SCID , Células-Tronco Neoplásicas/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Reprodutibilidade dos Testes
13.
Micromachines (Basel) ; 9(6)2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-30424208

RESUMO

This study combines the high-throughput capabilities of microfluidics with the sensitive measurements of microelectromechanical systems (MEMS) technology to perform biophysical characterization of circulating cells for diagnostic purposes. The proposed device includes a built-in microchannel that is probed by two opposing tips performing compression and sensing separately. Mechanical displacement of the compressing tip (up to a maximum of 14 µm) and the sensing tip (with a quality factor of 8.9) are provided by two separate comb-drive actuators, and sensing is performed with a capacitive displacement sensor. The device is designed and developed for simultaneous electrical and mechanical measurements. As the device is capable of exchanging the liquid inside the channel, different solutions were tested consecutively. The performance of the device was evaluated by introducing varying concentrations of glucose (from 0.55 mM (0.1%) to 55.5 mM (10%)) and NaCl (from 0.1 mM to 10 mM) solutions in the microchannel and by monitoring changes in the mechanical and electrical properties. Moreover, we demonstrated biological sample handling by capturing single cancer cells. These results show three important capabilities of the proposed device: mechanical measurements, electrical measurements, and biological sample handling. Combined in one device, these features allow for high-throughput multi-parameter characterization of single cells.

14.
Bioconjug Chem ; 29(7): 2370-2381, 2018 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-29878753

RESUMO

The severe side effects associated with the use of anthracycline anticancer agents continues to limit their use. Herein we describe the synthesis and preliminary biological evaluation of three enzymatically activatable doxorubicin-oligosaccharide prodrugs. The synthetic protocol allows late stage variation of the carbohydrate and is compatible with the use of disaccharides such as lactose as well as more complex oligosaccharides such as xyloglucan oligomers. The enzymatic release of doxorubicin from the prodrugs by both protease (plasmin) and human carboxylesterases (hCE1 and 2) was demonstrated in vitro and the cytotoxic effect of the prodrugs was assayed on MCF-7 breast cancer cells.


Assuntos
Doxorrubicina/uso terapêutico , Oligossacarídeos/química , Pró-Fármacos/síntese química , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Hidrolases de Éster Carboxílico/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Fibrinolisina/metabolismo , Humanos , Células MCF-7 , Pró-Fármacos/metabolismo
15.
Bull Cancer ; 104(2): 157-166, 2017 Feb.
Artigo em Francês | MEDLINE | ID: mdl-27863726

RESUMO

Overcoming the drug resistance remains a crucial issue in cancer treatment. For refractory patients, the use of MET receptor tyrosine kinase inhibitors seems to be hopeful. Indeed, important mechanisms underlying drug resistance argue for association of MET inhibitors with targeted therapies, both on first-line to prevent a primary resistance and on the second line to overcoming acquired resistance. Indeed, met gene amplification is the second most common alteration involved in acquired resistance to anti-epidermal growth factor receptor (EGFR) therapies in non-small cells lung cancer (NSCLC). Hypoxia, for its part, can activate MET transcription and amplifies HGF signaling resulting in MET activation, which could be involved in vascular endothelial growth factor (VEGF) inhibitors escape. In HER2 positive breast cancers, MET amplification may also induce tumor cells a hatch escape, resulting in secondary resistance. Finally, some patients with BRAF mutated melanoma exhibit primary resistance to BRAF inhibition by stromal HGF (ligand of MET) secretion resulting in MET receptor activation. Experimental data highlight the role of MET in primary and secondary resistance and encourage combined treatments including MET inhibitors. In this context, several promising clinical trials are in progress in numerous cancers (NSCLC, melanoma, breast cancer, glioblastoma…) using combination of anti-MET and other specific therapies targeting EGFR, BRAF, VEGF or HER2. This review summarizes the potential benefits that MET inhibition should provide to patients with cancer refractory to targeted therapies.


Assuntos
Terapia de Alvo Molecular , Neoplasias/terapia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Neoplasias da Mama/genética , Neoplasias da Mama/terapia , Carcinoma Pulmonar de Células não Pequenas , Resistencia a Medicamentos Antineoplásicos/genética , Receptores ErbB/antagonistas & inibidores , Feminino , Amplificação de Genes , Genes erbB-2 , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/terapia , Masculino , Melanoma/genética , Melanoma/terapia , Mutação , Neoplasias/genética , Proteínas Oncogênicas v-erbB/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas c-met/genética , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores
16.
Head Neck ; 38 Suppl 1: E2412-8, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26835877

RESUMO

Human epidermal growth factor receptor 3 (HER3) is a member of the human epidermal growth factor receptor (HER) family. The main characteristic of HER3 is that it does not possess tyrosine kinase activity, unlike other HERs. The role of HER3 in tumorigenesis has now been recognized, particularly in head and neck squamous cell carcinomas (HNSCCs). Despite conflicting studies, HER3 was found to be overexpressed in HNSCC samples, and correlates with disease progression and poor survival, especially when it is coexpressed with other HERs. HER3 is a significant factor in HNSCC treatment resistance. Indeed, HER3 is a major mechanism described for cetuximab resistance because of modification of epidermal growth factor receptor (EGFR) internalization and by phosphotidylinositol-3-kinase (PI3K)/AKT signaling pathway activation. HER3 also affects resistance to tyrosine kinase inhibitors (TKIs) and thereby promotes treatment escape and radiotherapy resistance by activation of the survival signaling pathway. To counteract this, pharmacologic inhibitors of HER3 are currently in development and could significantly improve HNSCC treatment. © 2016 Wiley Periodicals, Inc. Head Neck 38: E2412-E2418, 2016.


Assuntos
Carcinoma de Células Escamosas/genética , Neoplasias de Cabeça e Pescoço/genética , Receptor ErbB-3/genética , Carcinoma de Células Escamosas/tratamento farmacológico , Cetuximab/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor ErbB-3/antagonistas & inibidores , Transdução de Sinais
17.
Bioorg Med Chem ; 24(4): 651-60, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26740155

RESUMO

Three series of indeno[1,2-c]isoquinolines bearing a ferrocenyl entity were synthesized and evaluated for DNA interaction, topoisomerase I and II inhibition, and cytotoxicity against breast human cancer cell lines. In the first and second series, the ferrocenyl scaffold was inserted as a linker between the two nitrogen atoms. In the last series, it was introduced at the end of the carbon chain. The present study showed that the ferrocenyl entity enhanced the topoisomerase II inhibition. Most compounds showed a potent growth inhibitory effect on MDA-MB-231 cell line with the IC50 in µM range.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Ligação a DNA/antagonistas & inibidores , Compostos Ferrosos/síntese química , Compostos Ferrosos/farmacologia , Isoquinolinas/síntese química , Isoquinolinas/farmacologia , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/farmacologia , Antígenos de Neoplasias/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , DNA Topoisomerases Tipo II/metabolismo , Proteínas de Ligação a DNA/metabolismo , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Ferrosos/química , Humanos , Concentração Inibidora 50 , Isoquinolinas/química , Estrutura Molecular , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/química , Células Tumorais Cultivadas
18.
Cancer Lett ; 370(1): 10-8, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26404751

RESUMO

Epithelial ovarian cancer is the fourth cause of death among cancer-bearing women and frequently associated with carboplatin resistance, underlining the need for more efficient and targeted therapies. F14512 is an epipodophylotoxin-core linked to a spermine chain which enters cells via the polyamine transport system (PTS). Here, we investigate this novel concept of vectorization in ovarian cancer. We compared the effects of etoposide and F14512 on a panel of five carboplatin-sensitive or resistant ovarian cancer models. We assessed the incorporation of F17073, a spermine-linked fluorescent probe, in these cells and in 18 clinical samples. We then showed that F14512 exhibits a high anti-proliferative and pro-apoptotic activity, particularly in cells with high levels of F17073 incorporation. Consistently, F14512 significantly inhibited tumor growth compared to etoposide, in a cisplatin-resistant A2780R subcutaneous model, at a dose of 1.25 mg/kg. In addition, ex vivo analysis indicated that 15 out of 18 patients presented a higher F17073 incorporation into tumor cells compared to normal cells. Overall, our data suggest that F14512, a targeted drug with a potent anti-tumor efficacy, constitutes a potential new therapy for highly PTS-positive and platinum-resistant ovarian cancer-bearing patients.


Assuntos
Antineoplásicos/farmacologia , Poliaminas Biogênicas/metabolismo , Neoplasias Epiteliais e Glandulares/tratamento farmacológico , Neoplasias Ovarianas/tratamento farmacológico , Podofilotoxina/análogos & derivados , Inibidores da Topoisomerase II/farmacologia , Animais , Apoptose/efeitos dos fármacos , Carcinoma Epitelial do Ovário , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Neoplasias Epiteliais e Glandulares/metabolismo , Neoplasias Epiteliais e Glandulares/patologia , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Podofilotoxina/farmacologia
19.
Bioorg Med Chem ; 23(13): 3712-21, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25937235

RESUMO

A screening program aimed at discovering novel anticancer agents based on natural products led to the selection of koningic acid (KA), known as a potent inhibitor of glycolysis. A method was set up to produce this fungal sesquiterpene lactone in large quantities by fermentation, thus allowing (i) an extensive analysis of its anticancer potential in vitro and in vivo and (ii) the semi-synthesis of analogues to delineate structure-activity relationships. KA was characterized as a potent, but non-selective cytotoxic agent, active under both normoxic and hypoxic conditions and inactive in the A549 lung cancer xenograft model. According to our SAR, the acidic group could be replaced to keep bioactivity but an intact epoxide is essential.


Assuntos
Antineoplásicos/síntese química , Neoplasias Pulmonares/tratamento farmacológico , Animais , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacocinética , Antineoplásicos/farmacologia , Hipóxia Celular , Linhagem Celular Tumoral , Fermentação , Glicólise/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Camundongos Nus , Sesquiterpenos/síntese química , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/farmacocinética , Sesquiterpenos/farmacologia , Relação Estrutura-Atividade , Trichoderma/química , Trichoderma/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Ann Clin Transl Neurol ; 2(4): 439-43, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25909089

RESUMO

We report the first case of a child with a H3F3A K27M mutated pilocytic astrocytoma, who presented with a 10 years survival, and underwent spontaneous malignant transformation. The complex tumoral chromosomal rearrangements were consistent for genomic instability and for the histopathological features of malignant transformation into glioblastoma. H3F3A K27M mutations are rarely observed in benign neoplasms and may be associated with an adverse outcome. This mutation might not be the major driver that led to the onset of tumorigenesis, and we could consider that the associated TP53 mutation, would be required for malignant transformation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...