Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Appl Radiat Isot ; 159: 109088, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32250763

RESUMO

PURPOSE: The aim of this work is to investigate the influence of an external magnetic field (MF) on The American Association of Physicists in Medicine (AAPM) No. 43 Report (TG-43) parameters for 192Ir and 60Co high dose rate (HDR) brachytherapy sources using Monte Carlo (MC) simulation methods. MATERIALS AND METHODS: We used the Geant4 toolkit (version 10.1. p01) to simulate the geometry of 192Ir and 60Co brachytherapy sources. AAPM TG-43 parameters (the radial dose function, g(r), and the anisotropy function, F (r, θ)) of both 192Ir and 60Co sources were calculated in the presence of a magnetic field with strengths of 1.5T, 3T, and 7T in the X, Y, and Z directions in a voxelized water phantom. RESULTS: For the 192Ir source, the calculated values g(r) and F (r, θ) remained nearly unaffected by the magnetic field for all investigated strengths. For the 60Co source, the differences for the g(r) and F (r,θ) under the 1.5T, 3T, and 7T magnetic field strengths along the direction parallel with the MF were found to be an increase of up to 5%, 15%, and 33%, respectively. However, for the directions perpendicular with the magnetic field, there was a decrease of up to 3%, 6% and 15% under 1.5T, 3T and 7T strengths, respectively. CONCLUSION: Our results highlight the necessity of a Monte Carlo-based treatment planning system (TPS) if cobalt HDR treatments are performed under a magnetic field, especially for strengths greater than 1.5T.


Assuntos
Braquiterapia , Radioisótopos de Cobalto/uso terapêutico , Radioisótopos de Irídio/uso terapêutico , Campos Magnéticos , Algoritmos , Simulação por Computador , Método de Monte Carlo , Imagens de Fantasmas
4.
Med Dosim ; 43(3): 214-223, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28988675

RESUMO

The Geant4 toolkit was used to develop a Monte Carlo (MC)-based engine for accurate dose calculations in small radiation field sizes. The Geant4 toolkit (version 10.1.p02) was used to simulate 6-MV photon beam of a Varian2100C linear accelerator that is being used for stereotactic radiosurgery (SRS) treatment with small radiation fields. Geometric models of 3 in-house designed radiosurgical divergent cones, with the diameters of their projections at the isocenter being 10, 20, and 30 mm, were simulated. The accuracy of the MC simulation technique was examined by reproducing several different simulated dosimetric parameters of the primary beams with the experimental data. The dose distributions are first checked for single beams for each cone, then standard multiple field (SMF) techniques are applied. A sample set of DICOM files from computed tomography (CT) scan imaging of a patient's head was converted to the Geant4 geometry format to implement MC-based engine for a clinical test. To validate the accuracy of the MC-based calculations for SMF arrangements, the isodose lines from MC simulation in water phantom were compared with the measured isodose lines using EBT3 Gafchromic film in Solid Water phantoms. Agreements between measured and simulated depth dose values and beam profiles for SRS cones were generally within 2%/2 mm. For output factors, the largest discrepancy was observed for 10 mm SRS cone, which was 1.7%. For SMF techniques, in SRS cones, the MC simulation and EBT3 Gafchromic film dosimetry were in acceptable agreement (5%/5 mm). Excellent agreement between the results of the MC-based and measured dose values for both single and SMF techniques in SRS cones indicates the ability of the Geant4 toolkit to be applied as the platform for treatment planning of advanced radiotherapy techniques.


Assuntos
Planejamento da Radioterapia Assistida por Computador/métodos , Simulação por Computador , Humanos , Método de Monte Carlo
5.
Med Phys ; 44(12): 6538-6547, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28940520

RESUMO

PURPOSE: To evaluate plan quality of a novel MRI-compatible direction modulated brachytherapy (DMBT) tandem applicator using 192 Ir, 60 Co, and 169 Yb HDR brachytherapy sources, for various cervical cancer high-risk clinical target volumes (CTVHR ). MATERIALS AND METHODS: The novel DMBT tandem applicator has six peripheral grooves of 1.3-mm diameter along a 5.4-mm thick nonmagnetic tungsten alloy rod. Monte Carlo (MC) simulations were used to benchmark the dosimetric parameters of the 192 Ir, 60 Co, and 169 Yb HDR sources in a water phantom against the literature data. 45 clinical cases that were treated using conventional tandem-and-ring applicators with 192 Ir source (192 Ir-T&R) were selected consecutively from intErnational MRI-guided BRAchytherapy in CErvical cancer (EMBRACE) trial. Then, for each clinical case, 3D dose distribution of each source inside the DMBT and conventional applicators were calculated and imported onto an in-house developed inverse planning optimization code to generate optimal plans. All plans generated by the DMBT tandem-and-ring (DMBT T&R) from all three sources were compared to the respective 192 Ir-T&R plans. For consistency, all plans were normalized to the same CTVHR D90 achieved in clinical plans. The D2 cm3 for organs at risk (OAR) such as bladder, rectum, and sigmoid, and D90, D98, D10, V100, and V200 for CTVHR were calculated. RESULTS: In general, plan quality significantly improved when a conventional tandem (Con.T) is replaced with the DMBT tandem. The target coverage metrics were similar across 192 Ir-T&R and DMBT T&R plans with all three sources (P > 0.093). 60 Co-DMBT T&R generated greater hot spots and less dose homogeneity in the target volumes compared with the 192 Ir- and 169 Yb-DMBT T&R plans. Mean OAR doses in the DMBT T&R plans were significantly smaller (P < 0.0084) than the 192 Ir-T&R plans. Mean bladder D2 cm3 was reduced by 4.07%, 4.15%, and 5.13%, for the 192 Ir-, 60 Co-, and 169 Yb-DMBT T&R plans respectively. Mean rectum (sigmoid) D2 cm3 was reduced by 3.17% (3.63%), 2.57% (3.96%), and 4.65% (4.34%) for the 192 Ir-, 60 Co-, and 169 Yb-DMBT T&R plans respectively. The DMBT T&R plans with the 169 Yb source generally resulted in the greatest OAR sparing when the CTVHR were larger and irregular in shape, while for smaller and regularly shaped CTVHR (<30 cm3 ), OAR sparing between the sources were comparable. CONCLUSIONS: The DMBT tandem provides a promising alternative to the Con.T design with significant improvement in the plan quality for various target volumes. The DMBT T&R plans generated with the three sources of varying energies generated superior plans compared to the conventional T&R applicators. Plans generated with the 169 Yb-DMBT T&R produced best results for larger and irregularly shaped CTVHR in terms of OAR sparing. Thus, this study suggests that the combination of the DMBT tandem applicator with varying energy sources can work synergistically to generate improved plans for cervical cancer brachytherapy.


Assuntos
Braquiterapia , Radioisótopos de Cobalto/uso terapêutico , Radioisótopos de Irídio/uso terapêutico , Radioisótopos/uso terapêutico , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias do Colo do Útero/radioterapia , Itérbio/uso terapêutico , Braquiterapia/efeitos adversos , Radioisótopos de Cobalto/efeitos adversos , Feminino , Humanos , Radioisótopos de Irídio/efeitos adversos , Método de Monte Carlo , Órgãos em Risco/efeitos da radiação , Radioisótopos/efeitos adversos , Itérbio/efeitos adversos
6.
Med Phys ; 44(9): e297-e338, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28644913

RESUMO

Since the publication of the 2004 update to the American Association of Physicists in Medicine (AAPM) Task Group No. 43 Report (TG-43U1) and its 2007 supplement (TG-43U1S1), several new low-energy photon-emitting brachytherapy sources have become available. Many of these sources have satisfied the AAPM prerequisites for routine clinical purposes and are posted on the Brachytherapy Source Registry managed jointly by the AAPM and the Imaging and Radiation Oncology Core Houston Quality Assurance Center (IROC Houston). Given increasingly closer interactions among physicists in North America and Europe, the AAPM and the Groupe Européen de Curiethérapie-European Society for Radiotherapy & Oncology (GEC-ESTRO) have prepared another supplement containing recommended brachytherapy dosimetry parameters for eleven low-energy photon-emitting brachytherapy sources. The current report presents consensus datasets approved by the AAPM and GEC-ESTRO. The following sources are included: 125 I sources (BEBIG model I25.S17, BEBIG model I25.S17plus, BEBIG model I25.S18, Elekta model 130.002, Oncura model 9011, and Theragenics model AgX100); 103 Pd sources (CivaTech Oncology model CS10, IBt model 1031L, IBt model 1032P, and IsoAid model IAPd-103A); and 131 Cs (IsoRay Medical model CS-1 Rev2). Observations are included on the behavior of these dosimetry parameters as a function of radionuclide. Recommendations are presented on the selection of dosimetry parameters, such as from societal reports issuing consensus datasets (e.g., TG-43U1, AAPM Report #229), the joint AAPM/IROC Houston Registry, the GEC-ESTRO website, the Carleton University website, and those included in software releases from vendors of treatment planning systems. Aspects such as timeliness, maintenance, and rigor of these resources are discussed. Links to reference data are provided for radionuclides (radiation spectra and half-lives) and dose scoring materials (compositions and mass densities). The recent literature is examined on photon energy response corrections for thermoluminescent dosimetry of low-energy photon-emitting brachytherapy sources. Depending upon the dosimetry parameters currently used by individual physicists, use of these recommended consensus datasets may result in changes to patient dose calculations. These changes must be carefully evaluated and reviewed with the radiation oncologist prior to their implementation.


Assuntos
Braquiterapia , Dosagem Radioterapêutica , Europa (Continente) , Humanos , Método de Monte Carlo , Fótons , Radiometria , Relatório de Pesquisa
7.
Med Phys ; 44(9): 4426-4436, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28494095

RESUMO

PURPOSE: To evaluate the possibility of utilizing the high-dose rate (HDR) 169 Yb and 60 Co sources, in addition to 192 Ir, for the treatment of skin malignancies with conical applicators. METHODS: Monte Carlo (MC) simulations were used to benchmark the dosimetric parameters of single 169 Yb (4140), 60 Co (Co0.A86), and 192 Ir (mHDR-V2) brachytherapy sources in a water phantom and compared their results against published data. A standard conical tungsten alloy Leipzig-style applicator (Stand.Appl) was used for determination of the dose distributions at various depths with a single dwell position of the HDR sources. The HDR sources were modeled with its long axis parallel to the treatment plane within the opening section of the applicator. The source-to-surface distance (SSD) was 1.6 cm, which included a 0.1 cm thick removable plastic end-cap used for clinical applications. The prescription depth was considered to be 0.3 cm in a water phantom following the definitions in the literature for this treatment technique. Dose distributions generated with the Stand.Appl and the 169 Yb and 60 Co sources have been compared with those of the 192 Ir source, for the same geometry. Then, applicator wall thickness for the 60 Co source was increased (doubled) in MC simulations in order to minimize the leakage dose and penumbra to levels that were comparable to that from the 192 Ir source. For each source-applicator combination, the optimized plastic end-cap dimensions were determined in order to avoid over-dosage to the skin surface. RESULTS: The normalized dose profiles at the prescription depth for the 169 Yb-Stand.Appl and the 60 Co-double-wall applicator were found to be similar to that of the 192 Ir-Stand.Appl, with differences < 2.5%. The percentage depth doses (PDD) for the 192 Ir-, 169 Yb- and 60 Co-Stand.Appl were found to be comparable to the values with the 60 Co-double-walled applicator, with differences < 1.7%. The applicator output-factors at the prescription depth were also comparable at 0.309, 0.316, and 0.298 (cGy/hU) for the 192 Ir-, 169 Yb-Stand.Appl, and 60 Co-double-wall applicators respectively. The leakage dose around the Stand.Appl for distance > 2 cm from the applicator surface was < 5% for 192 Ir, < 1% for 169 Yb, and < 18% for 60 Co relative to the prescription dose. However, using the double-walled applicator for the 60 Co source reduced the leakage dose to around 5% of the prescription dose, which is comparable with that of the 192 Ir source. The optimized end-cap thicknesses for the 192 Ir-, 169 Yb-Stand.Appl, and the 60 Co-double-wall applicator were found to be 1.1, 0.6, and 3.7 mm respectively. CONCLUSIONS: Application of the 169 Yb (with Stand.Appl) or the 60 Co source (with double-wall applicator) has been evaluated as alternatives to the existing 192 Ir source (with Stand.Appl) for the HDR brachytherapy of skin cancer patients. These alternatives enable the clinics that may have 169 Yb or 60 Co sources instead of the 192 Ir source to perform the skin brachytherapy and achieve comparable results. The conical surface applicators must be used with a protective plastic end-cap to eliminate the excess electrons that are created in the source and applicator, in order to avoid skin surface over-dosage. The treatment times for the 60 Co source remain to be determined. Additionally, for 169 Yb, the source needs to be changed on monthly basis due to its limited half-life.


Assuntos
Braquiterapia , Dosagem Radioterapêutica , Neoplasias Cutâneas/radioterapia , Humanos , Radioisótopos de Irídio , Método de Monte Carlo , Radiometria
8.
Radiol Oncol ; 51(1): 101-112, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28265239

RESUMO

BACKGROUND: Interstitial rotating shield brachytherapy (I-RSBT) is a recently developed method for treatment of prostate cancer. In the present study TG-43 dosimetric parameters of a 153Gd source were obtained for use in I-RSBT. MATERIALS AND METHODS: A 153Gd source located inside a needle including a Pt shield and an aluminum window was simulated using MCNPX Monte Carlo code. Dosimetric parameters of this source model, including air kerma strength, dose rate constant, radial dose function and 2D anisotropy function, with and without the shields were calculated according to the TG-43 report. RESULTS: The air kerma strength was found to be 6.71 U for the non-shielded source with 1 GBq activity. This value was found to be 0.04 U and 6.19 U for the Pt shield and Al window cases, respectively. Dose rate constant for the non-shielded source was found to be 1.20 cGy/(hU). However, for a shielded source with Pt and aluminum window, dose rate constants were found to be 0.07 cGy/(hU) and 0.96 cGy/(hU), on the shielded and window sides, respectively. The values of radial dose function and anisotropy function were tabulated for these sources. Additionally, isodose curves were drawn for sources with and without shield, in order to evaluate the effect of shield on dose distribution. CONCLUSIONS: Existence of the Pt shield may greatly reduce the dose to organs at risk and normal tissues which are located toward the shielded side. The calculated air kerma strength, dose rate constant, radial dose function and 2D anisotropy function data for the 153Gd source for the non-shielded and the shielded sources can be used in the treatment planning system (TPS).

9.
J Med Phys ; 42(4): 213-221, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29296035

RESUMO

PURPOSE: The clinical efficacy of Grid therapy has been examined by several investigators. In this project, the hole diameter and hole spacing in Grid blocks were examined to determine the optimum parameters that give a therapeutic advantage. METHODS: The evaluations were performed using Monte Carlo (MC) simulation and commonly used radiobiological models. The Geant4 MC code was used to simulate the dose distributions for 25 different Grid blocks with different hole diameters and center-to-center spacing. The therapeutic parameters of these blocks, namely, the therapeutic ratio (TR) and geometrical sparing factor (GSF) were calculated using two different radiobiological models, including the linear quadratic and Hug-Kellerer models. In addition, the ratio of the open to blocked area (ROTBA) is also used as a geometrical parameter for each block design. Comparisons of the TR, GSF, and ROTBA for all of the blocks were used to derive the parameters for an optimum Grid block with the maximum TR, minimum GSF, and optimal ROTBA. A sample of the optimum Grid block was fabricated at our institution. Dosimetric characteristics of this Grid block were measured using an ionization chamber in water phantom, Gafchromic film, and thermoluminescent dosimeters in Solid Water™ phantom materials. RESULTS: The results of these investigations indicated that Grid blocks with hole diameters between 1.00 and 1.25 cm and spacing of 1.7 or 1.8 cm have optimal therapeutic parameters (TR > 1.3 and GSF~0.90). The measured dosimetric characteristics of the optimum Grid blocks including dose profiles, percentage depth dose, dose output factor (cGy/MU), and valley-to-peak ratio were in good agreement (±5%) with the simulated data. CONCLUSION: In summary, using MC-based dosimetry, two radiobiological models, and previously published clinical data, we have introduced a method to design a Grid block with optimum therapeutic response. The simulated data were reproduced by experimental data.

10.
Rep Pract Oncol Radiother ; 21(5): 480-6, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27489519

RESUMO

AIM: Verification of dose distributions for gynecological (GYN) brachytherapy implants using EBT Gafchromic film. BACKGROUND: One major challenge in brachytherapy is to verify the accuracy of dose distributions calculated by a treatment planning system. MATERIALS AND METHODS: A new phantom was designed and fabricated using 90 slabs of 18 cm × 16 cm × 0.2 cm Perspex to accommodate a tandem and Ovoid assembly, which is normally used for GYN brachytherapy treatment. This phantom design allows the use of EBT Gafchromic films for dosimetric verification of GYN implants with a cobalt-60 HDR system or a LDR Cs-137 system. Gafchromic films were exposed using a plan that was designed to deliver 1.5 Gy of dose to 0.5 cm distance from the lateral surface of ovoids from a pair of ovoid assembly that was used for treatment vaginal cuff. For a quantitative analysis of the results for both LDR and HDR systems, the measured dose values at several points of interests were compared with the calculated data from a commercially available treatment planning system. This planning system was utilizing the TG-43 formalism and parameters for calculation of dose distributions around a brachytherapy implant. RESULTS: The results of these investigations indicated that the differences between the calculated and measured data at different points were ranging from 2.4% to 3.8% for the LDR Cs-137 and HDR Co-60 systems, respectively. CONCLUSION: The EBT Gafchromic films combined with the newly designed phantom could be utilized for verification of the dose distributions around different GYN implants treated with either LDR or HDR brachytherapy procedures.

11.
J Appl Clin Med Phys ; 17(4): 430-441, 2016 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-27455485

RESUMO

A new design of 125I (Model IR-Seed2) brachytherapy source has been manufactured recently at the Applied Radiation Research School, Nuclear Science and Technology Research Institute in Iran. The source consists of six resin beads (0.5 mm diameter) that are sealed in a cylindrical titanium capsule of 0.7 mm internal and 0.8 mm external diameters. This work aims to evaluate the dosimetric parameters of the newly designed 125I source using experimental measurements and Monte Carlo (MC) simulations. Dosimetric characteristics (dose rate constant, radial dose function, and 2D and 1D anisotropy functions) of the IR-Seed2 were determined using experimental measurements and MC simulations following the recommendations by the Task Group 43 (TG-43U1) report of the American Association of Physicists in Medicine (AAPM). MC simulations were performed using the MCNP5 code in water and Plexiglas, and experimental measurements were carried out using thermoluminescent dosimeters (TLD-GR207A) in Plexiglas phantoms. The measured dose to water in Plexiglas data were used for verification of the accuracy of the source and phantom geometry in the Monte Carlo simulations. The final MC simulated data to water in water were recommended for clinical applications. The MC calculated dose rate constant (Λ) of the IR-Seed2 125I seed in water was found to be 0.992 ± 0.025 cGy h-1U-1. Additionally, its radial dose function by line and point source approximations, gL(r) and gp(r), calculated for distances from 0.1 cm to 7 cm. The values of gL(r) at radial distances from 0.5 cm to 5 cm were measured in a Plexiglas phantom to be between 1.212 and 0.413. The calculated and measured of values for 2D anisotropy function, F(r, θ), were obtained for the radial distances ranging from 1.5 cm to 5 cm and angular range of 0°-90° in a Plexiglas phantom. Also, the 2D anisotropy function was calculated in water for the clinical application. The results of these investigations show that the uncertainty of the experimental data is within ± 7% between the measured and simulated data in Plexiglas. Based on these results, the MC-simulated dosimetric parameters of the new 125I source model in water are presented for its clinical applications in brachytherapy treatments.


Assuntos
Braquiterapia/instrumentação , Braquiterapia/normas , Radioisótopos do Iodo , Método de Monte Carlo , Paládio , Imagens de Fantasmas , Dosimetria Termoluminescente/normas , Anisotropia , Humanos , Dosagem Radioterapêutica
12.
Med Phys ; 43(6): 3178-3205, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27277063

RESUMO

Although a multicenter, Phase III, prospective, randomized trial is the gold standard for evidence-based medicine, it is rarely used in the evaluation of innovative devices because of many practical and ethical reasons. It is usually sufficient to compare the dose distributions and dose rates for determining the equivalence of the innovative treatment modality to an existing one. Thus, quantitative evaluation of the dosimetric characteristics of innovative radiotherapy devices or applications is a critical part in which physicists should be actively involved. The physicist's role, along with physician colleagues, in this process is highlighted for innovative brachytherapy devices and applications and includes evaluation of (1) dosimetric considerations for clinical implementation (including calibrations, dose calculations, and radiobiological aspects) to comply with existing societal dosimetric prerequisites for sources in routine clinical use, (2) risks and benefits from a regulatory and safety perspective, and (3) resource assessment and preparedness. Further, it is suggested that any developed calibration methods be traceable to a primary standards dosimetry laboratory (PSDL) such as the National Institute of Standards and Technology in the U.S. or to other PSDLs located elsewhere such as in Europe. Clinical users should follow standards as approved by their country's regulatory agencies that approved such a brachytherapy device. Integration of this system into the medical source calibration infrastructure of secondary standard dosimetry laboratories such as the Accredited Dosimetry Calibration Laboratories in the U.S. is encouraged before a source is introduced into widespread routine clinical use. The American Association of Physicists in Medicine and the Groupe Européen de Curiethérapie-European Society for Radiotherapy and Oncology (GEC-ESTRO) have developed guidelines for the safe and consistent application of brachytherapy using innovative devices and applications. The current report covers regulatory approvals, calibration, dose calculations, radiobiological issues, and overall safety concerns that should be addressed during the commissioning stage preceding clinical use. These guidelines are based on review of requirements of the U.S. Nuclear Regulatory Commission, U.S. Department of Transportation, International Electrotechnical Commission Medical Electrical Equipment Standard 60601, U.S. Food and Drug Administration, European Commission for CE Marking (Conformité Européenne), and institutional review boards and radiation safety committees.

13.
Australas Phys Eng Sci Med ; 39(2): 477-91, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27168066

RESUMO

The purpose of this research is to study the effect of various applicator compositions on dosimetric parameters and dose distribution of (192)Ir, (137)Cs, and (60)Co sources, using Monte Carlo simulation techniques. To study the effect of applicators on source dosimetry, the dose rate constant, and radial dose function and isodose curves for the above noted sources were calculated in the presence and absence of plastic, titanium, and a stainless steel applicators. The effects of the applicators on the dosimetric parameters and isodose curves of these sources were dependent of the source type and materials of the applicator. The (192)Ir source with the stainless steel applicator has the maximum difference of dose rate (4.2 %) relative to the without applicator case. The (60)Co source with plastic applicator has the minimum dose variation. Moreover, this effect is higher for lower energy sources. Ignoring the effect of applicator composition and geometry on dose distribution may cause discrepancies in treatment planning. Plastic applicators have the least radiation attenuation compared to the other applicators, therefore, they are recommended for use in brachytherapy. A table of correction factors has been introduced for different sources and applicators with different materials for the clinical applications.


Assuntos
Radioisótopos de Césio/química , Radioisótopos de Cobalto/química , Radioisótopos de Irídio/química , Radiometria/métodos , Braquiterapia , Simulação por Computador , Relação Dose-Resposta à Radiação , Cinética , Método de Monte Carlo , Titânio/química
14.
J Appl Clin Med Phys ; 17(2): 379-390, 2016 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-27074460

RESUMO

Monte Carlo simulations are widely used for calculation of the dosimetric parameters of brachytherapy sources. MCNP4C2, MCNP5, MCNPX, EGS4, EGSnrc, PTRAN, and GEANT4 are among the most commonly used codes in this field. Each of these codes utilizes a cross-sectional library for the purpose of simulating different elements and materials with complex chemical compositions. The accuracies of the final outcomes of these simulations are very sensitive to the accuracies of the cross-sectional libraries. Several investigators have shown that inaccuracies of some of the cross section files have led to errors in 125I and 103Pd parameters. The purpose of this study is to compare the dosimetric parameters of sample brachytherapy sources, calculated with three different versions of the MCNP code - MCNP4C, MCNP5, and MCNPX. In these simulations for each source type, the source and phantom geometries, as well as the number of the photons, were kept identical, thus eliminating the possible uncertainties. The results of these investigations indicate that for low-energy sources such as 125I and 103Pd there are discrepancies in gL(r) values. Discrepancies up to 21.7% and 28% are observed between MCNP4C and other codes at a distance of 6 cm for 103Pd and 10 cm for 125I from the source, respectively. However, for higher energy sources, the discrepancies in gL(r) values are less than 1.1% for 192Ir and less than 1.2% for 137Cs between the three codes.


Assuntos
Braquiterapia/instrumentação , Braquiterapia/métodos , Radioisótopos do Iodo/uso terapêutico , Neoplasias/radioterapia , Imagens de Fantasmas , Algoritmos , Estudos Transversais , Humanos , Método de Monte Carlo , Paládio , Fótons , Radiometria , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos
15.
J Appl Clin Med Phys ; 17(2): 206-219, 2016 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-27074484

RESUMO

Grid therapy is a treatment technique that has been introduced for patients with advanced bulky tumors. The purpose of this study is to investigate the effect of the radiation sensitivity of the tumors and the design of the grid blocks on the clinical response of grid therapy. The Monte Carlo simulation technique is used to determine the dose distribution through a grid block that was used for a Varian 2100C linear accelerator. From the simulated dose profiles, the therapeutic ratio (TR) and the equivalent uniform dose (EUD) for different types of tumors with respect to their radiation sensitivities were calculated. These calculations were performed using the linear quadratic (LQ) and the Hug-Kellerer (H-K) models. The results of these calculations have been validated by comparison with the clinical responses of 232 patients from different publications, who were treated with grid therapy. These published results for different tumor types were used to examine the correlation between tumor radiosensitivity and the clinical response of grid therapy. Moreover, the influence of grid design on their clinical responses was investigated by using Monte Carlo simulations of grid blocks with different hole diameters and different center-to-center spacing. The results of the theoretical models and clinical data indicated higher clinical responses for the grid therapy on the patients with more radioresistant tumors. The differences between TR values for radioresistant cells and radiosensitive cells at 20 Gy and 10 Gy doses were up to 50% and 30%, respectively. Interestingly, the differences between the TR values with LQ model and H-K model were less than 4%. Moreover, the results from the Monte Carlo studies showed that grid blocks with a hole diameters of 1.0 cm and 1.25 cm may lead to about 19% higher TR relative to the grids with hole diameters smaller than 1.0 cm or larger than 1.25 cm (with 95% confidence interval). In sum-mary, the results of this study indicate that grid therapy is more effective for tumors with radioresistant characteristics than radiosensitive tumors.


Assuntos
Fracionamento da Dose de Radiação , Modelos Biológicos , Neoplasias/radioterapia , Aceleradores de Partículas/instrumentação , Tolerância a Radiação , Radioterapia/instrumentação , Humanos , Método de Monte Carlo , Radioterapia/métodos
16.
Prostate Cancer ; 2016: 9561494, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27092279

RESUMO

Purpose. In this study, we evaluated our experience with salvage brachytherapy after discovery of biochemical recurrence after a prior brachytherapy procedure. Methods and Materials. From 2001 through 2012 twenty-one patients treated by brachytherapy within University of Kentucky or from outside centers developed biochemical failure and had no evidence of metastases. Computed tomography (CT) scans were evaluated; patients who had an underseeded portion of their prostate were considered for reimplantation. Results. The majority of the patients in this study (61.9%) were low risk and median presalvage PSA was 3.49 (range 17.41-1.68). Mean follow-up was 61 months. At last follow-up after reseeding, 11/21 (52.4%) were free of biochemical recurrence. There was a trend towards decreased freedom from biochemical recurrence in low risk patients (p = 0.12). International Prostate Symptom Scores (IPSS) increased at 3-month follow-up visits but decreased and were equivalent to baseline scores at 18 months. Conclusions. Salvage brachytherapy after primary brachytherapy is possible; however, in our experience the side-effect profile after the second brachytherapy procedure was higher than after the first brachytherapy procedure. In this cohort of patients we demonstrate that approximately 50% oncologic control, low risk patients appear to have better outcomes than others.

17.
J Contemp Brachytherapy ; 8(1): 74-81, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26985200

RESUMO

PURPOSE: Low energy sources are routinely used in prostate brachytherapy. (125)I is one of the most commonly used sources. Low energy (131)Cs source was introduced recently as a brachytherapy source. The aim of this study is to compare dose distributions of (125)I, (103)Pd, and (131)Cs sources in interstitial brachytherapy of prostate. MATERIAL AND METHODS: ProstaSeed (125)I brachytherapy source was simulated using MCNPX Monte Carlo code. Additionally, two hypothetical sources of (103)Pd and (131)Cs were simulated with the same geometry as the ProstaSeed (125)I source, while having their specific emitted gamma spectra. These brachytherapy sources were simulated with distribution of forty-eight seeds in a phantom including prostate. The prostate was considered as a sphere with radius of 1.5 cm. Absolute and relative dose rates were obtained in various distances from the source along the transverse and longitudinal axes inside and outside the tumor. Furthermore, isodose curves were plotted around the sources. RESULTS: Analyzing the initial dose profiles for various sources indicated that with the same time duration and air kerma strength, (131)Cs delivers higher dose to tumor. However, relative dose rate inside the tumor is higher and outside the tumor is lower for the (103)Pd source. CONCLUSIONS: The higher initial absolute dose in cGy/(h.U) of (131)Cs brachytherapy source is an advantage of this source over the others. The higher relative dose inside the tumor and lower relative dose outside the tumor for the (103)Pd source are advantages of this later brachytherapy source. Based on the total dose the (125)I source has advantage over the others due to its longer half-life.

18.
J Appl Clin Med Phys ; 16(5): 219­227, 2015 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-26699302

RESUMO

Several different applicators have been designed for treatment of skin cancers, such as scalp, hand, and legs using Ir-192 HDR brachytherapy sources (IR-HDRS), miniature electronic brachytherapy sources (eBT), and external electron beam radiation therapy (EEBRT). Although, all of these methodologies may deliver the desired radiation dose to the skin, but the dose to the underlying bone may become the limiting factor for selection of the optimum treatment technique. In this project, dose to the underlying bone has been evaluated as a function of the radiation type, thickness of the bone, and thickness of the soft tissue on top of bone, assuming the same radiation dose delivery to the skin. These evaluations are performed using Monte Carlo (MC) simulation technique with MCNP5 code. The results of these investigations indicate that, for delivery of the same skin dose with a 50keV eBT, 4 MeV or 6 MeV EEBRT techniques, the average doses received by the underlying bones are 5.31, 2, or 1.75 times the dose received from IR-HDRS technique, respectively. These investigations indicate that, for the treatment of skin cancer condition with bone immediately beneath skin, the eBT technique may not be the most suitable technique, as it may lead to excessive bone dose relative to IR-HDRS and 6 MeV or 4 MeV electron beams.


Assuntos
Osso e Ossos/efeitos da radiação , Braquiterapia/efeitos adversos , Elétrons/efeitos adversos , Órgãos em Risco/efeitos da radiação , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/normas , Neoplasias Cutâneas/radioterapia , Humanos , Radioisótopos de Irídio/efeitos adversos , Método de Monte Carlo , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada
19.
J Appl Clin Med Phys ; 16(5): 344­357, 2015 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-26699318

RESUMO

The effects of gold nanoparticles (GNPs) in 125I brachytherapy dose enhancement on choroidal melanoma are examined using the Monte Carlo simulation technique. Usually, Monte Carlo ophthalmic brachytherapy dosimetry is performed in a water phantom. However, here, the compositions of human eye have been considered instead of water. Both human eye and water phantoms have been simulated with MCNP5 code. These simulations were performed for a fully loaded 16 mm COMS eye plaque containing 13 125I seeds. The dose delivered to the tumor and normal tissues have been calculated in both phantoms with and without GNPs. Normally, the radiation therapy of cancer patients is designed to deliver a required dose to the tumor while sparing the surrounding normal tissues. However, as the normal and cancerous cells absorbed dose in an almost identical fashion, the normal tissue absorbed radiation dose during the treatment time. The use of GNPs in combination with radiotherapy in the treatment of tumor decreases the absorbed dose by normal tissues. The results indicate that the dose to the tumor in an eyeball implanted with COMS plaque increases with increasing GNPs concentration inside the target. Therefore, the required irradiation time for the tumors in the eye is decreased by adding the GNPs prior to treatment. As a result, the dose to normal tissues decreases when the irradiation time is reduced. Furthermore, a comparison between the simulated data in an eye phantom made of water and eye phantom made of human eye composition, in the presence of GNPs, shows the significance of utilizing the composition of eye in ophthalmic brachytherapy dosimetry Also, defining the eye composition instead of water leads to more accurate calculations of GNPs radiation effects in ophthalmic brachytherapy dosimetry.


Assuntos
Braquiterapia/instrumentação , Neoplasias da Coroide/radioterapia , Neoplasias Oculares/radioterapia , Ouro/química , Melanoma/radioterapia , Nanopartículas Metálicas , Neoplasias da Próstata/radioterapia , Neoplasias Uveais/radioterapia , Simulação por Computador , Humanos , Radioisótopos do Iodo , Masculino , Modelos Biológicos , Modelos Teóricos , Método de Monte Carlo , Imagens de Fantasmas , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Água/química
20.
Phys Med Biol ; 60(23): 9185-202, 2015 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-26572554

RESUMO

Compression is a technique to immobilize the target or improve the dose distribution within the treatment volume during different irradiation techniques such as AccuBoost(®) brachytherapy. However, there is no systematic method for determination of dose distribution for uncompressed tissue after irradiation under compression. In this study, the mechanical behavior of breast tissue between compressed and uncompressed states was investigated. With that, a novel method was developed to determine the dose distribution in uncompressed tissue after irradiation of compressed breast tissue. Dosimetry was performed using two different methods, namely, Monte Carlo simulations using the MCNP5 code and measurements using thermoluminescent dosimeters (TLD). The displacement of the breast elements was simulated using a finite element model and calculated using ABAQUS software. From these results, the 3D dose distribution in uncompressed tissue was determined. The geometry of the model was constructed from magnetic resonance images of six different women volunteers. The mechanical properties were modeled by using the Mooney-Rivlin hyperelastic material model. Experimental dosimetry was performed by placing the TLD chips into the polyvinyl alcohol breast equivalent phantom. The results determined that the nodal displacements, due to the gravitational force and the 60 Newton compression forces (with 43% contraction in the loading direction and 37% expansion in the orthogonal direction) were determined. Finally, a comparison of the experimental data and the simulated data showed agreement within 11.5% ± 5.9%.


Assuntos
Mama/efeitos da radiação , Simulação por Computador , Modelos Teóricos , Método de Monte Carlo , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador/métodos , Dosimetria Termoluminescente/métodos , Braquiterapia/métodos , Compressão de Dados , Feminino , Análise de Elementos Finitos , Humanos , Dosagem Radioterapêutica , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...