Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 384(6694): 458-465, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38662818

RESUMO

Based on an extensive model intercomparison, we assessed trends in biodiversity and ecosystem services from historical reconstructions and future scenarios of land-use and climate change. During the 20th century, biodiversity declined globally by 2 to 11%, as estimated by a range of indicators. Provisioning ecosystem services increased several fold, and regulating services decreased moderately. Going forward, policies toward sustainability have the potential to slow biodiversity loss resulting from land-use change and the demand for provisioning services while reducing or reversing declines in regulating services. However, negative impacts on biodiversity due to climate change appear poised to increase, particularly in the higher-emissions scenarios. Our assessment identifies remaining modeling uncertainties but also robustly shows that renewed policy efforts are needed to meet the goals of the Convention on Biological Diversity.


Assuntos
Biodiversidade , Mudança Climática , Extinção Biológica
2.
Metabolomics ; 20(1): 11, 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38141081

RESUMO

INTRODUCTION: The Automated Quantification Algorithm (AQuA) is a rapid and efficient method for targeted NMR-based metabolomics, currently optimised for blood plasma. AQuA quantifies metabolites from 1D-1H NMR spectra based on the height of only one signal per metabolite, which minimises the computational time and workload of the method without compromising the quantification accuracy. OBJECTIVES: To develop a fast and computationally efficient extension of AQuA for quantification of selected metabolites in highly complex samples, with minimal prior sample preparation. In particular, the method should be capable of handling interferences caused by broad background signals. METHODS: An automatic baseline correction function was combined with AQuA into an automated workflow, the extended AQuA, for quantification of metabolites in plant root exudate NMR spectra that contained broad background signals and baseline distortions. The approach was evaluated using simulations as well as a spike-in experiment in which known metabolite amounts were added to a complex sample matrix. RESULTS: The extended AQuA enables accurate quantification of metabolites in 1D-1H NMR spectra with varying complexity. The method is very fast (< 1 s per spectrum) and can be fully automated. CONCLUSIONS: The extended AQuA is an automated quantification method intended for 1D-1H NMR spectra containing broad background signals and baseline distortions. Although the method was developed for plant root exudates, it should be readily applicable to any NMR spectra displaying similar issues as it is purely computational and applied to NMR spectra post-acquisition.


Assuntos
Algoritmos , Metabolômica , Metabolômica/métodos , Espectroscopia de Prótons por Ressonância Magnética , Exsudatos e Transudatos , Raízes de Plantas
3.
Glob Chang Biol ; 26(2): 760-771, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31680366

RESUMO

Scenario-based biodiversity modelling is a powerful approach to evaluate how possible future socio-economic developments may affect biodiversity. Here, we evaluated the changes in terrestrial biodiversity intactness, expressed by the mean species abundance (MSA) metric, resulting from three of the shared socio-economic pathways (SSPs) combined with different levels of climate change (according to representative concentration pathways [RCPs]): a future oriented towards sustainability (SSP1xRCP2.6), a future determined by a politically divided world (SSP3xRCP6.0) and a future with continued global dependency on fossil fuels (SSP5xRCP8.5). To this end, we first updated the GLOBIO model, which now runs at a spatial resolution of 10 arc-seconds (~300 m), contains new modules for downscaling land use and for quantifying impacts of hunting in the tropics, and updated modules to quantify impacts of climate change, land use, habitat fragmentation and nitrogen pollution. We then used the updated model to project terrestrial biodiversity intactness from 2015 to 2050 as a function of land use and climate changes corresponding with the selected scenarios. We estimated a global area-weighted mean MSA of 0.56 for 2015. Biodiversity intactness declined in all three scenarios, yet the decline was smaller in the sustainability scenario (-0.02) than the regional rivalry and fossil-fuelled development scenarios (-0.06 and -0.05 respectively). We further found considerable variation in projected biodiversity change among different world regions, with large future losses particularly for sub-Saharan Africa. In some scenario-region combinations, we projected future biodiversity recovery due to reduced demands for agricultural land, yet this recovery was counteracted by increased impacts of other pressures (notably climate change and road disturbance). Effective measures to halt or reverse the decline of terrestrial biodiversity should not only reduce land demand (e.g. by increasing agricultural productivity and dietary changes) but also focus on reducing or mitigating the impacts of other pressures.


Assuntos
Biodiversidade , Ecossistema , Agricultura , Mudança Climática
4.
Front Microbiol ; 10: 2610, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31803155

RESUMO

Bacillus velezensis strains are applied as ecologically safe biopesticides, plant growth promoting rhizobacteria (PGPR), and in veterinary probiotics. They are abundant in various environments including soil, plants, marine habitats, the intestinal micro-flora, etc. The mechanisms underlying this adaptive plasticity and bioactivity are not well understood, nor is it clear why several strains outperform other same species isolates by their bioactivities. The main objective of this work was to demonstrate versatility of bioactivities and lifestyle strategies of the selected B. velezensis strains suitable to serve as model organisms in future studies. Here, we performed a comparative study of newly sequenced genomes of four B. velezensis isolates with distinct phenotypes and isolation origin, which were assessed by RNA sequencing under the effect of root exudate stimuli and profiled by epigenetic modifications of chromosomal DNA. Among the selected strains, UCMB5044 is an oligotrophic PGPR strain adapted to nutrient poor desert soils. UCMB5113 and At1 are endophytes that colonize plants and require nutrient rich media. In contrast, the probiotic strain, UCMB5007, is a copiotroph, which shows no propensity to colonize plants. PacBio and Illumina sequencing approaches were used to generate complete genome assemblies, tracing epigenetic modifications, and determine gene expression profiles. All sequence data was deposited at NCBI. The strains, UCMB5113 and At1, show 99% sequence identity and similar phenotypes despite being isolated from geographically distant regions. UCMB5007 and UCMB5044 represent another group of organisms with almost identical genomes but dissimilar phenotypes and plant colonization propensity. The two plant associated strains, UCMB5044 and UCMB5113, share 398 genes putatively associated with root colonization, which are activated by exposure to maize root exudates. In contrast, UCMB5007 did not respond to root exudate stimuli. It was hypothesized that alterations in the global methylation pattern and some other epigenetic modifications enable adaptation of strains to different habitats and therefore may be of importance in terms of the biotechnological applicability of these bacteria. Contrary, the ability to grow on root exudates as a sole source of nutrients or a strong antagonism against phytopathogens showed by the strains in vitro cannot be considered as good predictors of PGPR activities.

5.
Sci Rep ; 9(1): 16282, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31704956

RESUMO

Abiotic stresses are main limiting factors for agricultural production around the world. Plant growth promoting rhizobacteria (PGPR) have been shown to improve abiotic stress tolerance in several plants. However, the molecular and physiological changes connected with PGPR priming of stress management are poorly understood. The present investigation aimed to explore major metabolic and molecular changes connected with the ability of Bacillus velezensis 5113 to mediate abiotic stress tolerance in wheat. Seedlings treated with Bacillus were exposed to heat, cold/freezing or drought stress. Bacillus improved wheat survival in all stress conditions. SPAD readings showed higher chlorophyll content in 5113-treated stressed seedlings. Metabolite profiling using NMR and ESI-MS provided evidences for metabolic reprograming in 5113-treated seedlings and showed that several common stress metabolites were significantly accumulated in stressed wheat. Two-dimensional gel electrophoresis of wheat leaves resolved more than 300 proteins of which several were differentially expressed between different treatments and that cold stress had a stronger impact on the protein pattern compared to heat and drought. Peptides maps or sequences were used for database searches which identified several homologs. The present study suggests that 5113 treatment provides systemic effects that involve metabolic and regulatory functions supporting both growth and stress management.


Assuntos
Adaptação Biológica , Bacillus/fisiologia , Reprogramação Celular , Metabolismo Energético , Estresse Fisiológico , Triticum/microbiologia , Triticum/fisiologia , Reprogramação Celular/genética , Secas , Metaboloma , Metabolômica/métodos , Oxirredução , Desenvolvimento Vegetal , Folhas de Planta/metabolismo , Metabolismo Secundário , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Simbiose
6.
Ann Bot ; 120(4): 551-562, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-28961818

RESUMO

Background and Aims: Certain micro-organisms can improve plant protection against pathogens. The protective effect may be direct, e.g. due to antibiotic compounds, or indirect, by priming of plant defence as induced systemic resistance (ISR). The plant growth-promoting rhizobacterium Bacillus amyloliquefaciens UCMB5113 shows potential for disease management of oilseed rape. To investigate the mode of action of this protection, especially in relation to jasmonic acid-dependent ISR, Bacillus UCMB5113 was tested with Arabidopsis thaliana mutants and several important fungal pathogens of Brassica species. Methods: Secreted lipopeptide fractions from Bacillus UCMB5113, together with synthetic peptide mimics, were evaluated for their effects on fungal phytopathogens and A. thaliana . The structures of secreted lipopeptides were analysed using mass spectrometry. Plant mutants and reporter lines were used to identify signalling steps involved in disease suppression by lipopeptides. Key Results: In plate tests Bacillus UCMB5113 and lipopeptide extracts suppressed growth of several fungal pathogens infecting Brassica plants. Separation of secreted lipopeptides using reversed-phase high-performance liquid chromatography revealed several fractions that inhibited fungal growth. Analysis by mass spectrometry identified the most potent compounds as novel linear forms of antifungal fengycins, with synthetic peptide mimics confirming the biological activity. Application of the lipopeptide extracts on Arabidopsis roots provided systemic protection against Alternaria brassicicola on leaves. Arabidopsis signalling mutants and PDF1.2 and VSP2 promoter-driven GUS lines indicated that the lipopeptide fraction involved jasmonic-acid-dependent host responses for suppression of fungal growth indicative of ISR. Conclusions: The ability of Bacillus UCMB5113 to counteract pathogens using both antagonistic lipopeptides and through ISR provides a promising tool for sustainable crop production.


Assuntos
Bacillus amyloliquefaciens/fisiologia , Brassica/microbiologia , Resistência à Doença/fisiologia , Lipopeptídeos/fisiologia , Alternaria/metabolismo , Antifúngicos/metabolismo , Arabidopsis/microbiologia , Arabidopsis/fisiologia , Bacillus amyloliquefaciens/metabolismo , Brassica/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Folhas de Planta/microbiologia , Folhas de Planta/fisiologia , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia
7.
Environ Sci Technol ; 51(6): 3298-3306, 2017 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-28072521

RESUMO

It is increasingly recognized that human consumption leads to considerable losses of biodiversity. This study is the first to systematically quantify these losses in relation to land use and greenhouse gas (GHG) emissions associated with the production and consumption of (inter)nationally traded goods and services by presenting consumption-based biodiversity losses, in short biodiversity footprint, for 45 countries and world regions globally. Our results showed that (i) the biodiversity loss per citizen shows large variations among countries, with higher values when per-capita income increases; (ii) the share of biodiversity losses due to GHG emissions in the biodiversity footprint increases with income; (iii) food consumption is the most important driver of biodiversity loss in most of the countries and regions, with a global average of 40%; (iv) more than 50% of the biodiversity loss associated with consumption in developed economies occurs outside their territorial boundaries; and (v) the biodiversity footprint per dollar consumed is lower for wealthier countries. The insights provided by our analysis might support policymakers in developing adequate responses to avert further losses of biodiversity when population and incomes increase. Both the mitigation of GHG emissions and land use related reduction options in production and consumption should be considered in strategies to protect global biodiversity.


Assuntos
Biodiversidade , Efeito Estufa , Pegada de Carbono , Humanos
8.
Planta ; 245(1): 15-30, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27541497

RESUMO

MAIN CONCLUSION: This study showed that Bacillus amyloliquefaciens UCMB5113 colonizing Arabidopsis roots changed root structure and promoted growth implying the usability of this strain as a novel tool to support sustainable crop production. Root architecture plays a crucial role for plants to ensure uptake of water, minerals and nutrients and to provide anchorage in the soil. The root is a dynamic structure with plastic growth and branching depending on the continuous integration of internal and environmental factors. The rhizosphere contains a complex microbiota, where some microbes can colonize plant roots and support growth and stress tolerance. Here, we report that the rhizobacterium Bacillus amyloliquefaciens subsp. plantarum UCMB5113 stimulated the growth of Arabidopsis thaliana Col-0 by increased lateral root outgrowth and elongation and root-hair formation, although primary root elongation was inhibited. In addition, the growth of the above ground tissues was stimulated by UCMB5113. Specific hormone reporter gene lines were tested which suggested a role for at least auxin and cytokinin signaling during rhizobacterial modulation of Arabidopsis root architecture. UCMB5113 produced cytokinins and indole-3-acetic acid, and the formation of the latter was stimulated by root exudates and tryptophan. The plant growth promotion effect by UCMB5113 did not appear to depend on jasmonic acid in contrast to the disease suppression effect in plants. UCMB5113 exudates inhibited primary root growth, while a semi-purified lipopeptide fraction did not and resulted in the overall growth promotion indicating an interplay of many different bacterial compounds that affect the root growth of the host plant. This study illustrates that beneficial microbes interact with plants in root development via classic and novel signals.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/microbiologia , Bacillus amyloliquefaciens/fisiologia , Interações Hospedeiro-Patógeno , Arabidopsis/efeitos dos fármacos , Bacillus amyloliquefaciens/efeitos dos fármacos , Brassinosteroides/farmacologia , Citocininas/farmacologia , Giberelinas/farmacologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Lipopeptídeos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento
9.
FEMS Microbiol Ecol ; 92(6): fiw070, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27053756

RESUMO

Biotic interactions through volatile organic compounds (VOC) are frequent in nature. This investigation aimed to study the role of ITALIC! BacillusVOC for the beneficial effects on plants observed as improved growth and pathogen control. Four ITALIC! Bacillus amyloliquefacienssubsp. ITALIC! plantarumstrains were screened for VOC effects on ITALIC! Arabidopsis thalianaCol-0 seedlings and ITALIC! Brassicafungal phytopathogens. VOC from all four ITALIC! Bacillusstrains could promote growth of ITALIC! Arabidopsisplants resulting in increased shoot biomass but the effects were dependent on the growth medium. Dose response studies with UCMB5113 on MS agar with or without root exudates showed significant plant growth promotion even at low levels of bacteria. ITALIC! BacillusVOC antagonized growth of several fungal pathogens ITALIC! in vitro However, the plant growth promotion efficacy and fungal inhibition potency varied among the ITALIC! Bacillusstrains. VOC inhibition of several phytopathogens indicated efficient microbial antagonism supporting high rhizosphere competence of the ITALIC! Bacillusstrains. GC-MS analysis identified several VOC structures where the profiles differed depending on the growth medium. The ability of ITALIC! Bacillusstrains to produce both volatile and soluble compounds for plant growth promotion and disease biocontrol provides examples of rhizosphere microbes as an important ecosystem service with high potential to support sustainable crop production.


Assuntos
Bacillus amyloliquefaciens/metabolismo , Agentes de Controle Biológico/farmacologia , Brassica/microbiologia , Desenvolvimento Vegetal/efeitos dos fármacos , Compostos Orgânicos Voláteis/farmacologia , Alternaria/efeitos dos fármacos , Arabidopsis/microbiologia , Ascomicetos/efeitos dos fármacos , Biomassa , Botrytis/efeitos dos fármacos , Ecossistema , Doenças das Plantas/microbiologia , Raízes de Plantas/microbiologia , Rizosfera , Plântula/microbiologia , Verticillium/efeitos dos fármacos
10.
Antonie Van Leeuwenhoek ; 106(6): 1247-57, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25294724

RESUMO

Certain strains of Bacillus amyloliquefaciens can colonize plants and improve growth and stress management. In order to study these effects, bacterial growth dynamics on plants and in the rhizosphere are of interest calling for specific analytical tools. For that purpose, quantitative real-time PCR (qPCR) assays were developed in order to differentiate among three closely related B. amyloliquefaciens subsp. plantarum strains (UCMB5033, UCMB5036, UCMB5113) and to determine their levels with high accuracy. Oligonucleotide primers were designed for strain unique gene sequences and used for SYBR green based qPCR analysis. Standard curves covered a wide linear range (10(6)) of DNA amounts with the lowest detection level at 50 fg. Post-reaction melting curve analysis showed only a single product. Accurate threshold cycles were obtained, even in the presence of high excess of related Bacillus strains and total bacterial DNA from soil. Analysis of Bacillus colonisation after seed treatment of two oilseed rape cultivars (Oase and Ritz) grown on agar support showed a time dependent effect but that the bacteria mostly were found on root tissues and little on green tissues. The colonisation on plants grown in soil varied among the Bacillus strains where Oase seemed to house more bacteria than Ritz. Applied as a mixture, all three Bacillus strains co-existed on the roots of plants grown in soil. The qPCR assay in combination with other techniques will be a powerful tool to study plant interactions of these B. amyloliquefaciens biocontrol agents to further understand the requirements for successful interactions and improvement of plant properties.


Assuntos
Bacillus/crescimento & desenvolvimento , Bacillus/isolamento & purificação , Carga Bacteriana , Brassica/microbiologia , Raízes de Plantas/microbiologia , Reação em Cadeia da Polimerase em Tempo Real
11.
Stand Genomic Sci ; 9(3): 718-25, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25197456

RESUMO

Bacillus amyloliquefaciens subsp. plantarum UCMB5033 is of special interest for its ability to promote host plant growth through production of stimulating compounds and suppression of soil borne pathogens by synthesizing antibacterial and antifungal metabolites or priming plant defense as induced systemic resistance. The genome of B. amyloliquefaciens UCMB5033 comprises a 4,071,167 bp long circular chromosome that consists of 3,912 protein-coding genes, 86 tRNA genes and 10 rRNA operons.

12.
PLoS One ; 9(8): e104651, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25119988

RESUMO

The Bacillus amyloliquefaciens subsp. plantarum strain UCMB5113 is a Gram-positive rhizobacterium that can colonize plant roots and stimulate plant growth and defense based on unknown mechanisms. This reinforcement of plants may provide protection to various forms of biotic and abiotic stress. To determine the genetic traits involved in the mechanism of plant-bacteria association, the genome sequence of UCMB5113 was obtained by assembling paired-end Illumina reads. The assembled chromosome of 3,889,532 bp was predicted to encode 3,656 proteins. Genes that potentially contribute to plant growth promotion such as indole-3-acetic acid (IAA) biosynthesis, acetoin synthesis and siderophore production were identified. Moreover, annotation identified putative genes responsible for non-ribosomal synthesis of secondary metabolites and genes supporting environment fitness of UCMB5113 including drug and metal resistance. A large number of genes encoding a diverse set of secretory proteins, enzymes of primary and secondary metabolism and carbohydrate active enzymes were found which reflect a high capacity to degrade various rhizosphere macromolecules. Additionally, many predicted membrane transporters provides the bacterium with efficient uptake capabilities of several nutrients. Although, UCMB5113 has the possibility to produce antibiotics and biosurfactants, the protective effect of plants to pathogens seems to be indirect and due to priming of plant induced systemic resistance. The availability of the genome enables identification of genes and their function underpinning beneficial interactions of UCMB5113 with plants.


Assuntos
Arabidopsis/microbiologia , Bacillus/genética , Proteínas de Bactérias/genética , Brassica napus/microbiologia , Genoma Bacteriano/genética , Filogenia , Raízes de Plantas/microbiologia , Arabidopsis/crescimento & desenvolvimento , Sequência de Bases , Biofilmes/crescimento & desenvolvimento , Brassica napus/crescimento & desenvolvimento , Análise por Conglomerados , Biologia Computacional , Anotação de Sequência Molecular , Dados de Sequência Molecular , Análise de Sequência de DNA , Especificidade da Espécie
13.
J Agric Food Chem ; 61(24): 5893-902, 2013 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-23692427

RESUMO

Potato tubers naturally contain a number of defense substances, some of which are of major concern for food safety. Among these substances are the glycoalkaloids and calystegines. We have here analyzed levels of glycoalkaloids (α-chaconine and α-solanine) and calystegines (A3, B2, and B4) in potato tubers subjected to mechanical wounding, light exposure, or elevated temperature: stress treatments that are known or anticipated to induce glycoalkaloid levels. Basal glycoalkaloid levels in tubers varied between potato cultivars. Wounding and light exposure, but not heat, increased tuber glycoalkaloid levels, and the relative response differed among the cultivars. Also, calystegine levels varied between cultivars, with calystegine B4 showing the most marked variation. However, the total calystegine level was not affected by wounding or light exposure. The results demonstrate a strong variation among potato cultivars with regard to postharvest glycoalkaloid increases, and they suggest that the biosynthesis of glycoalkaloids and calystegines occurs independently of each other.


Assuntos
Produtos Agrícolas/química , Manipulação de Alimentos , Qualidade dos Alimentos , Nortropanos/análise , Tubérculos/química , Alcaloides de Solanáceas/análise , Solanum tuberosum/química , Produtos Agrícolas/metabolismo , Produtos Agrícolas/efeitos da radiação , Glicosilação , Temperatura Alta/efeitos adversos , Luz/efeitos adversos , Fenômenos Mecânicos , Nortropanos/química , Nortropanos/metabolismo , Tubérculos/metabolismo , Tubérculos/efeitos da radiação , Alcaloides de Solanáceas/biossíntese , Alcaloides de Solanáceas/química , Alcaloides de Solanáceas/metabolismo , Solanina/análogos & derivados , Solanina/análise , Solanina/química , Solanina/metabolismo , Solanum tuberosum/metabolismo , Solanum tuberosum/efeitos da radiação , Especificidade da Espécie , Estereoisomerismo , Suécia , Regulação para Cima
14.
Genome Announc ; 1(2): e0011113, 2013 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-23516223

RESUMO

We announce here the genome sequence of Bacillus amyloliquefaciens strain UCMB5036, a plant growth-promoting bacterium isolated from a cotton plant. Its genome contains gene clusters involved in nonribosomal synthesis of secondary metabolites known for their antimicrobial activities. The availability of this genome will provide novel insights into plant-bacterium-associated activities.

15.
J Exp Bot ; 64(4): 935-48, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23314818

RESUMO

ML (MD2-related lipid recognition) proteins are known to enhance innate immune responses in mammals. This study reports the analysis of the putative ML gene family in Arabidopsis thaliana and suggests a role for the ML3 gene in herbivory-associated responses in plants. Feeding by larvae of the Lepidopteran generalist herbivore Spodoptera littoralis and larvae of the specialist herbivore Plutella xylostella activated ML3 transcription in leaf tissues. ML3 loss-of-function Arabidopsis plants were compromised in the upregulation of herbivory-induced genes and displayed a semi-dwarf phenotype. Herbivory bioassays showed that larvae of S. littoralis fed on ml3 mutant plants gained more weight compared to larvae fed on wild-type plants while larvae of P. xylostella did not show any significant difference. Virus-induced gene silencing of ML3 expression in plants compromised in jasmonic acid (JA) and salicylic acid (SA) signalling revealed a complex role of ML3 in JA/defence signalling affecting both JA- and SA-dependent responses. The data suggest that ML3 is involved in herbivory-mediated responses in Arabidopsis and that it has a potential role in herbivory-associated molecular pattern recognition.


Assuntos
Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Herbivoria , Animais , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/farmacologia , Inativação Gênica , Larva/fisiologia , Família Multigênica , Oxilipinas/farmacologia , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Regiões Promotoras Genéticas , Ácido Salicílico/farmacologia , Transdução de Sinais , Spodoptera/fisiologia
16.
J Integr Plant Biol ; 52(10): 879-90, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20883440

RESUMO

Plant thioglucosidases are the only known S-glycosidases in the large superfamily of glycosidases. These enzymes evolved more recently and are distributed mainly in Brassicales. Thioglucosidase research has focused mainly on the cruciferous crops due to their economic importance and cancer preventive benefits. In this study, we cloned a novel myrosinase gene, CpTGG1, from Carica papaya Linnaeus. and showed that it was expressed in the aboveground tissues in planta. The recombinant CpTGG1 expressed in Pichia pastoris catalyzed the hydrolysis of both sinigrin and glucotropaeolin (the only thioglucoside present in papaya), showing that CpTGG1 was indeed a functional myrosinase gene. Sequence alignment analysis indicated that CpTGG1 contained all the motifs conserved in functional myrosinases from crucifers, except for two aglycon-binding motifs, suggesting substrate priority variation of the non-cruciferous myrosinases. Using sinigrin as substrate, the apparent K(m) and V(max) values of recombinant CpTGG1 were 2.82 mM and 59.9 µmol min⁻¹ mg protein⁻¹ , respectively. The K(cat) /K(m) value was 23 s⁻¹ mM⁻¹ . O-ß-glucosidase activity towards a variety of substrates were tested, CpTGG1 displayed substrate-dependent and ascorbic acid-independent O-ß-glucosidase activity towards 2-nitrophenyl-ß-D-glucopyranoside and 4-nitrophenyl-ß-D-glucopyranoside, but was inactive towards glucovanillin and n-octyl-ß-D-glucopyranoside. Phylogenetic analysis indicated CpTGG1 belongs to the MYR II subfamily of myrosinases.


Assuntos
Ácido Ascórbico/metabolismo , Carica/enzimologia , Glicosídeo Hidrolases/metabolismo , beta-Glucosidase/metabolismo , Sequência de Aminoácidos , Carica/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/classificação , Dados de Sequência Molecular , Filogenia , Homologia de Sequência de Aminoácidos , beta-Glucosidase/química , beta-Glucosidase/classificação
17.
Phytochemistry ; 70(11-12): 1345-54, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19703694

RESUMO

Myrosinases (EC 3.2.1.147) are beta-thioglucoside glucosidases present in Brassicaceae plants. These enzymes serve to protect plants against pathogens and insect pests by initiating breakdown of the secondary metabolites glucosinolates into toxic products. Several forms of myrosinases are present in plants but the properties and role of different isoenzymes are not well understood. The dicot plant model organism Arabidopsis thaliana seems to contain six myrosinase genes (TGG1-TGG6). In order to compare the different myrosinases, cDNAs corresponding to TGG1 from leaves and TGG4 and TGG5 from roots were cloned and overexpressed in Pichia pastoris. The His-tagged recombinant proteins were purified using affinity chromatography and the preparations were homogenous according to SDS-PAGE analysis. Myrosinase activity was confirmed for all forms and compared with respect to catalytic activity towards the allyl-glucosinolate sinigrin. There was a 22-fold difference in basal activity among the myrosinases. The enzymes were active in a broad pH range, are rather thermostable and active in a wide range of salt concentrations but sensitive to high salt concentrations. The myrosinases showed different activation-inhibition responses towards ascorbic acid with maximal activity around 0.7-1 mM. No activity was registered towards desulphosinigrin and this compound did not inhibit myrosinase activity towards sinigrin. All myrosinases also displayed O-beta-glucosidase activity, although with lower efficiency compared to the myrosinase activity. The differences in catalytic properties among myrosinase isozymes for function in planta are discussed.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Genes de Plantas , Glicosídeo Hidrolases/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Ácido Ascórbico/metabolismo , Catálise , DNA Complementar , Glucosinolatos/metabolismo , Glicosídeo Hidrolases/genética , Concentração de Íons de Hidrogênio , Isoenzimas , Pichia/genética , Pichia/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/genética , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Sais , Temperatura , beta-Glucosidase/metabolismo
18.
Plant Mol Biol ; 70(1-2): 31-45, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19184461

RESUMO

Many microorganisms interact with plants but information is insufficient concerning requirements for plant colonization and if interactions become beneficial or detrimental. Pretreatment of oilseed rape (Brassica napus) with Bacillus results in disease suppression upon challenge with pathogens. We have studied transcriptome effects on oilseed rape primed with the Bacillus amyloliquefaciens 5113 biocontrol strain and compared that with effects of the fungal pathogen Botrytis cinerea. Using the cDNA-AFLP technique 21,700 transcript fragments were obtained of which 120 were differentially expressed and verified by northern blot analysis for selected transcripts. Priming with Bacillus caused greater effect on leaf than root transcripts where sequencing and BLAST analysis suggested many of the transcripts to be involved in metabolism and bioenergy. Bacillus and Botrytis treatment also changed metabolic gene expression in addition to signaling and transcription control genes as well as a potential disease resistance (TIR-NBS-LRR) gene. The pathogen provoked non-primed plant profile was less dominated by metabolism than Bacillus and Bacillus-Botrytis treated plants. Several transcripts were homologues to unknown genes in the different treatments. Altogether Bacillus treatment of roots cause a systemic gene expression in leaves suggested to result in a metabolic reprogramming as a major event during priming.


Assuntos
Antibiose/genética , Bacillus/crescimento & desenvolvimento , Botrytis/patogenicidade , Brassica napus/genética , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Brassica napus/microbiologia , DNA Complementar/genética , DNA de Plantas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Doenças das Plantas/genética , Folhas de Planta/genética , Folhas de Planta/microbiologia , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Análise de Sequência de DNA
19.
J Agric Food Chem ; 56(8): 2702-7, 2008 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-18345631

RESUMO

Myrosinase is a cytosolic plant enzyme present in daikon ( Raphanus sativus, Japanese white radish) roots that hydrolyzes 4-methylthio-3-butenyl glucosinolate (MTBGLS) into the natural pungent agent 4-methylthio-3-butenyl isothiocyanate (MTBITC), which possesses antimicrobial, antimutagenic, and anticarcinogenic properties. The concentration of MTBGLS, myrosinase activity, and production of MTBITC in seven daikon varieties (one conventional and six heirlooms) were determined to rank the activity of the glucosinolate-myrosinase system and identify critical factors influencing the production of MTBITC. The six heirloom varieties produced 2.0-11.5 times higher levels of MTBITC as compared to the conventional variety, Aokubi, which is consumed by the present Japanese population. The myrosinase was located exclusively in the outer epidermal layer in Aokubi, and MTBGLS was widely distributed throughout the root tissue. Although the skin is a potentially rich source of myrosinase in Aokubi, the skin is usually peeled off in the current practice of preparing daikon for cooking. New practices are therefore proposed for the preparation of daikon tubers that eliminate the peeling of the skin to avoid removing the enzyme needed to convert MTBGLS to the health-beneficial MTBITC. It is also concluded that the consumption of heirloom daikon varieties in addition to changes in food preparation will optimize the health benefits of daikon.


Assuntos
Glucosinolatos/metabolismo , Glicosídeo Hidrolases/metabolismo , Raphanus/enzimologia , Glucosinolatos/análise , Glicosídeo Hidrolases/genética , Isotiocianatos/metabolismo , Raízes de Plantas/química , Raízes de Plantas/enzimologia , RNA Mensageiro/análise , Raphanus/química
20.
Plant Mol Biol ; 64(4): 425-38, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17401749

RESUMO

Plants exploit a broad range of defense mechanisms to effectively combat invasion by pathogens or herbivores. Each environmental stress activates multiple signal transduction pathways to ensure an effective spatial and temporal defense response. A detailed transcriptome analysis using the cDNA-AFLP technique was performed to identify genes that are differentially expressed in oilseed rape (Brassica napus cv. Westar) leaves upon treatment with methyl jasmonate, mechanical wounding, or feeding by diamondback moth larvae (Plutella xylostella). In total, 16 different primer combinations were used, generating cDNA fragments ranging from 50 bp to 500 bp in size. This technique generated an average of 60 amplification products per reaction and therefore a total number of 5,600 fragments per treatment. Out of 16,800 bands, 124 showed qualitative differences among the treated and their respective control samples, including 95 up-regulated and 29 down-regulated bands. Expression of a selected subset of differentially expressed genes was confirmed by Northern blot analysis. Sequencing of fragments grouped many of the expressed genes in the categories of signaling and wound or pathogen response with examples like Jacalin, Strictosidine synthase and MD-2-LPS homologs. Genes with altered expression in distal tissue included those involved in cellular housekeeping functions, suggesting modified resource allocation needed to respond to different stress conditions. Differences in local and systemic response as well as among the three different challenges were observed. Several new transcripts were identified that may play a role in insect attack and other signal transduction pathways.


Assuntos
Acetatos/farmacologia , Brassica napus/genética , Ciclopentanos/farmacologia , Mariposas/fisiologia , Proteínas de Plantas/genética , Polimorfismo Genético , Animais , Brassica napus/efeitos dos fármacos , Brassica napus/parasitologia , DNA Complementar/química , DNA Complementar/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Larva/fisiologia , Oxilipinas , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/parasitologia , RNA Mensageiro/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...