Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomaterials ; 32(34): 8870-9, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21899881

RESUMO

Design principles for corneal implants are challenging and include permeability which inherently involves pore openings on the polymer surface. These topographical cues can be significant to a successful clinical outcome where a stratified epithelium is needed over the device surface, such as with a corneal onlay or corneal repair material. The impact of polymer surface topography on the growth and adhesion of corneal epithelial tissue was assessed using porous perfluoropolyether membranes with a range of surface topography. Surfaces were characterised by AFM and XPS, and the permeability and water content of membranes was measured. Biological testing of membranes involved a 21-day in vitro tissue assay to evaluate migration, stratification and adhesion of corneal epithelium. Similar parameters were monitored in vivo by surgically implanting membranes into feline corneas for up to 5 months. Data showed optimal growth and adhesion of epithelial tissue in vitro when polymer surface features were below a 150 nm RMS value. Normal processes of tissue growth and adhesion were disrupted when RMS values approached 300 nm. Data from the in vivo study confirmed these findings. Together, outcomes demonstrated the importance of surface topography in the design of implantable devices that depend on functional epithelial cover.


Assuntos
Materiais Biocompatíveis/química , Córnea/ultraestrutura , Epitélio Corneano/crescimento & desenvolvimento , Éteres/química , Fluorocarbonos/química , Próteses e Implantes , Animais , Gatos , Epitélio Corneano/ultraestrutura , Membranas Artificiais , Permeabilidade , Porosidade , Propriedades de Superfície
2.
Biomaterials ; 31(32): 8153-63, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20692702

RESUMO

The aged eye's ability to change focus (accommodation) may be restored by replacing the hardened natural lens with a soft gel. Functionalised polysiloxane macromonomers, designed for application as an injectable, in situ curable accommodating intraocular lens (A-IOL), were prepared via a two-step synthesis. Prepolymers were synthesised via ring opening polymerisation (ROP) of octamethylcyclotetrasiloxane (D(4)) and 2,4,6,8-tetramethylcyclotetrasiloxane (D(4)(H)) in toluene using trifluoromethanesulfonic acid (TfOH) as catalyst. Hexaethyldisiloxane (HEDS) was used as the end group to control the molecular weight of the prepolymers, which were then converted to macromonomers by hydrosilylation of the SiH groups with allyl methacrylate (AM) to introduce polymerisable groups. The resulting macromonomers had an injectable consistency and thus, were able to be injected into and refill the empty lens capsular bag. The macromonomers also contained a low ratio of polymerisable groups so that they may be cured on demand, in situ, under irradiation of blue light, in the presence of a photo-initiator, to form a soft polysiloxane gel (an intraocular lens) in the eye. The pre-cure viscosity and post-cure modulus of the polysiloxanes, which are crucial factors for an injectable, in situ curable A-IOL application, were controlled by adjusting the end group and D(4)(H) concentrations, respectively, in the ROP. The macromonomers were fully cured within 5 min under light irradiation, as shown by the rapid change in modulus monitored by photo-rheology. Ex vivo primate lens stretching experiments on an Ex Vivo Accommodation Simulator (EVAS) showed that the polysiloxane gel refilled lenses achieved over 60% of the accommodation amplitude of the natural lens. An in vivo biocompatibility study in rabbits using the lens refilling (Phaco-Ersatz) procedure demonstrated that the soft gels had good biocompatibility with the ocular tissue. The polysiloxane macromonomers meet the targeted optical and mechanical properties of a young natural crystalline lens and show promise as candidate materials for use as injectable, in situ curable A-IOLs for lens refilling procedures.


Assuntos
Acomodação Ocular , Materiais Biocompatíveis/química , Lentes Intraoculares , Siloxanas/química , Animais , Córnea/ultraestrutura , Injeções , Cristalino/fisiologia , Macaca fascicularis , Teste de Materiais , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...