Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Heart J ; 41(31): 2938-2948, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32728688

RESUMO

AIMS: GITR-a co-stimulatory immune checkpoint protein-is known for both its activating and regulating effects on T-cells. As atherosclerosis bears features of chronic inflammation and autoimmunity, we investigated the relevance of GITR in cardiovascular disease (CVD). METHODS AND RESULTS: GITR expression was elevated in carotid endarterectomy specimens obtained from patients with cerebrovascular events (n = 100) compared to asymptomatic patients (n = 93) and correlated with parameters of plaque vulnerability, including plaque macrophage, lipid and glycophorin A content, and levels of interleukin (IL)-6, IL-12, and C-C-chemokine ligand 2. Soluble GITR levels were elevated in plasma from subjects with CVD compared to healthy controls. Plaque area in 28-week-old Gitr-/-Apoe-/- mice was reduced, and plaques had a favourable phenotype with less macrophages, a smaller necrotic core and a thicker fibrous cap. GITR deficiency did not affect the lymphoid population. RNA sequencing of Gitr-/-Apoe-/- and Apoe-/- monocytes and macrophages revealed altered pathways of cell migration, activation, and mitochondrial function. Indeed, Gitr-/-Apoe-/- monocytes displayed decreased integrin levels, reduced recruitment to endothelium, and produced less reactive oxygen species. Likewise, GITR-deficient macrophages produced less cytokines and had a reduced migratory capacity. CONCLUSION: Our data reveal a novel role for the immune checkpoint GITR in driving myeloid cell recruitment and activation in atherosclerosis, thereby inducing plaque growth and vulnerability. In humans, elevated GITR expression in carotid plaques is associated with a vulnerable plaque phenotype and adverse cerebrovascular events. GITR has the potential to become a novel therapeutic target in atherosclerosis as it reduces myeloid cell recruitment to the arterial wall and impedes atherosclerosis progression.


Assuntos
Aterosclerose , Proteína Relacionada a TNFR Induzida por Glucocorticoide , Placa Aterosclerótica , Animais , Apolipoproteínas E/genética , Modelos Animais de Doenças , Glucocorticoides , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Receptores do Fator de Necrose Tumoral
2.
Arterioscler Thromb Vasc Biol ; 39(4): 685-693, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30786742

RESUMO

Objective- Expression of the chemokine-like receptor ChemR23 (chemerin receptor 23) has been specifically attributed to plasmacytoid dendritic cells (pDCs) and macrophages and ChemR23 has been suggested to mediate an inflammatory immune response in these cells. Because chemokine receptors are important in perpetuating chronic inflammation, we aimed to establish the role of ChemR23-deficiency on macrophages and pDCs in atherosclerosis. Approach and Results- ChemR23-knockout/knockin mice expressing eGFP (enhanced green fluorescent protein) were generated and after crossing with apolipoprotein E-deficient ( Apoe-/- ChemR23 e/e) animals were fed a western-type diet for 4 and 12 weeks. Apoe-/- ChemR23 e/e mice displayed reduced lesion formation and reduced leukocyte adhesion to the vessel wall after 4 weeks, as well as diminished plaque growth, a decreased number of lesional macrophages with an increased proportion of M2 cells and a less inflammatory lesion composition after 12 weeks of western-type diet feeding. Hematopoietic ChemR23-deficiency similarly reduced atherosclerosis. Additional experiments revealed that ChemR23-deficiency induces an alternatively activated macrophage phenotype, an increased cholesterol efflux and a systemic reduction in pDC frequencies. Consequently, expression of the pDC marker SiglecH in atherosclerotic plaques of Apoe-/- ChemR23 e/e mice was declined. ChemR23-knockout pDCs also exhibited a reduced migratory capacity and decreased CCR (CC-type chemokine receptor)7 expression. Finally, adoptive transfer of sorted wild-type and knockout pDCs into Apoe-/- recipient mice revealed reduced accumulation of ChemR23-deficient pDCs in atherosclerotic lesions. Conclusions- Hematopoietic ChemR23-deficiency increases the proportion of alternatively activated M2 macrophages in atherosclerotic lesions and attenuates pDC homing to lymphatic organs and recruitment to atherosclerotic lesions, which synergistically restricts atherosclerotic plaque formation and progression.


Assuntos
Aterosclerose/metabolismo , Quimiocinas/fisiologia , Células Dendríticas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Macrófagos/metabolismo , Animais , Aterosclerose/etiologia , Aterosclerose/prevenção & controle , Adesão Celular , Quimiocinas/deficiência , Quimiocinas/genética , Colesterol/metabolismo , Dieta Ocidental/efeitos adversos , Progressão da Doença , Feminino , Técnicas de Introdução de Genes , Técnicas de Inativação de Genes , Genes Reporter , Inflamação , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/genética , Ativação de Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Fenótipo , Receptores CCR7/metabolismo
3.
Eur Heart J ; 40(4): 372-382, 2019 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-30452556

RESUMO

Aims: The E3-ligase CBL-B (Casitas B-cell lymphoma-B) is an important negative regulator of T cell activation that is also expressed in macrophages. T cells and macrophages mediate atherosclerosis, but their regulation in this disease remains largely unknown; thus, we studied the function of CBL-B in atherogenesis. Methods and results: The expression of CBL-B in human atherosclerotic plaques was lower in advanced lesions compared with initial lesions and correlated inversely with necrotic core area. Twenty weeks old Cblb-/-Apoe-/- mice showed a significant increase in plaque area in the aortic arch, where initial plaques were present. In the aortic root, a site containing advanced plaques, lesion area rose by 40%, accompanied by a dramatic change in plaque phenotype. Plaques contained fewer macrophages due to increased apoptosis, larger necrotic cores, and more CD8+ T cells. Cblb-/-Apoe-/- macrophages exhibited enhanced migration and increased cytokine production and lipid uptake. Casitas B-cell lymphoma-B deficiency increased CD8+ T cell numbers, which were protected against apoptosis and regulatory T cell-mediated suppression. IFNγ and granzyme B production was enhanced in Cblb-/-Apoe-/- CD8+ T cells, which provoked macrophage killing. Depletion of CD8+ T cells in Cblb-/-Apoe-/- bone marrow chimeras rescued the phenotype, indicating that CBL-B controls atherosclerosis mainly through its function in CD8+ T cells. Conclusion: Casitas B-cell lymphoma-B expression in human plaques decreases during the progression of atherosclerosis. As an important regulator of immune responses in experimental atherosclerosis, CBL-B hampers macrophage recruitment and activation during initial atherosclerosis and limits CD8+ T cell activation and CD8+ T cell-mediated macrophage death in advanced atherosclerosis, thereby preventing the progression towards high-risk plaques.


Assuntos
Aterosclerose/etiologia , Linfócitos T CD8-Positivos/imunologia , Linfoma de Células B/complicações , Macrófagos/patologia , Proteína Oncogênica v-cbl/metabolismo , Placa Aterosclerótica/etiologia , Animais , Apoptose , Aterosclerose/metabolismo , Aterosclerose/patologia , Modelos Animais de Doenças , Humanos , Linfoma de Células B/metabolismo , Linfoma de Células B/patologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia
4.
Eur Heart J ; 38(48): 3590-3599, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29045618

RESUMO

Aims: The co-stimulatory receptor CD27 modulates responses of T cells, B cells, and NK cells. Various T cell subsets participate in atherogenesis. However, the role of CD27 in atherosclerosis remains unexplored. Methods and results: Here we investigated the effect of bone marrow-derived and systemic CD27 deficiency in Apolipoprotein E-deficient (Apoe-/-) mice in early and advanced stages of atherosclerosis. Lethally-irradiated Apoe-/- mice reconstituted with Cd27-/-Apoe-/- bone marrow and consuming an atherogenic diet displayed a markedly increased plaque size and lesional inflammation compared to mice receiving Cd27+/+Apoe-/- bone marrow. Accordingly, chow diet-fed Cd27-/-Apoe-/- mice showed exacerbated lesion development and increased inflammation at the age of 18 weeks. At a more advanced stage of atherosclerosis (28 weeks), lesion size and phenotype did not differ between the two groups. Systemic and bone marrow-derived CD27 deficiency reduced the abundance of regulatory T cells (Treg) in blood, lymphoid organs, and the aorta. Numbers of other immune cells were not affected while expression of inflammatory cytokine genes (e.g. IL-1ß and IL-6) was increased in the aorta when haematopoietic CD27 was lacking. In vitro, Tregs of CD27-deficient mice showed similar suppressive capacity compared with their wild-type controls and migrated equally towards CCL19 and CCL21. However, thymic Cd27-/- Tregs underwent increased apoptosis and expressed fewer markers of proliferation in vivo. Reconstitution of Cd27-/-Apoe-/- mice with Cd27+/+Apoe-/- Tregs reversed the increase in atherosclerosis. Conclusion: We demonstrate that CD27 co-stimulation increases the number of Tregs and limits lesion development and inflammation in experimental atherosclerosis, particularly during early stages of disease. Thus, our study suggests that promotion of CD27 function may mitigate atherosclerosis.


Assuntos
Aterosclerose/imunologia , Hiperlipidemias/complicações , Membro 7 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Animais , Apoptose , Aterosclerose/etiologia , Aterosclerose/prevenção & controle , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Hiperlipidemias/imunologia , Hiperlipidemias/metabolismo , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Linfócitos T Reguladores/imunologia
5.
Thromb Haemost ; 117(1): 164-175, 2017 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-27786334

RESUMO

The co-stimulatory molecule CD70 is expressed on activated immune cells and is known to modulate responses of T, B, and NK cells via its receptor CD27. Until now, there is only limited data describing the role of CD70 in atherosclerosis. We observed that ruptured human carotid atherosclerotic plaques displayed higher CD70 expression than stable carotid atherosclerotic plaques, and that CD70 expression in murine atheroma localized to macrophages. Lack of CD70 impaired the inflammatory capacity (e. g. reactive oxygen species and nitric oxide production) of bone marrow-derived macrophages, increased both M1-like and M2-like macrophage markers, and rendered macrophages metabolically inactive and prone to apoptosis. Moreover, CD70-deficient macrophages expressed diminished levels of scavenger receptors and ABC-transporters, impairing uptake of oxidised low-density lipoprotein (oxLDL) and cholesterol efflux, respectively. Hyperlipidaemic Apoe-/- mice reconstituted with CD70-deficient bone marrow displayed a profound increase in necrotic core size, plaque area, and number of lesional macrophages as compared to mice receiving control bone marrow. Accordingly, 18 week-old, chow diet-fed CD70-deficient Apoe-/- mice displayed larger atheroma characterised by lower cellularity and more advanced plaque phenotype than Apoe-/- mice. In conclusion, CD70 promotes macrophage function and viability and is crucial for effective phagocytosis and efflux of oxLDL. Deficiency in CD70 results in more advanced atheroma. Our data suggest that CD70 mitigates atherosclerosis at least in part by modulating macrophage function.


Assuntos
Aterosclerose/metabolismo , Ligante CD27/metabolismo , Doenças das Artérias Carótidas/metabolismo , Macrófagos/metabolismo , Placa Aterosclerótica , Idoso , Animais , Apoptose , Aterosclerose/imunologia , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Transplante de Medula Óssea , Ligante CD27/deficiência , Ligante CD27/genética , Doenças das Artérias Carótidas/imunologia , Doenças das Artérias Carótidas/patologia , Células Cultivadas , Colesterol/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Mediadores da Inflamação/metabolismo , Lipoproteínas LDL/metabolismo , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Camundongos Knockout para ApoE , Necrose , Óxido Nítrico/metabolismo , Fagocitose , Fenótipo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Tempo
6.
Arterioscler Thromb Vasc Biol ; 36(9): 1748-52, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27444204

RESUMO

OBJECTIVE: Glucocorticoid-induced tumor necrosis factor receptor family-related protein (GITR) is expressed on CD4(+) effector memory T cells and regulatory T cells; however, its role on these functionally opposing cell types in atherosclerosis is not fully understood. APPROACH AND RESULTS: Low-density lipoprotein receptor-deficient mice (Ldlr(-/-)) were lethally irradiated and reconstituted with either bone marrow from B-cell-restricted Gitrl transgenic mice or from wild-type controls and fed a high-cholesterol diet for 11 weeks. Chimeric Ldlr(-/-) Gitrl(tg) mice showed a profound increase in both CD4(+) effector memory T cells and regulatory T cells in secondary lymphoid organs. Additionally, the number of regulatory T cells was significantly enhanced in the thymus and aorta of these mice along with increased Gitrl and Il-2 transcript levels. Atherosclerotic lesions of Ldlr(-/-) Gitrl(tg) chimeras contained more total CD3(+) T cells as well as Foxp3(+) regulatory T cells overall, leading to significantly less severe atherosclerosis. CONCLUSIONS: These data indicate that continuous GITR stimulation through B cell Gitrl acts protective in a mouse model of atherosclerosis by regulating the balance between regulatory and effector memory CD4(+) T cells.


Assuntos
Aorta/metabolismo , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Proteína Relacionada a TNFR Induzida por Glucocorticoide/metabolismo , Ativação Linfocitária , Linfócitos T Reguladores/metabolismo , Animais , Aorta/imunologia , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/imunologia , Doenças da Aorta/metabolismo , Aterosclerose/genética , Aterosclerose/imunologia , Aterosclerose/metabolismo , Linfócitos B/imunologia , Linfócitos B/metabolismo , Transplante de Medula Óssea , Complexo CD3/metabolismo , Colesterol na Dieta , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/metabolismo , Predisposição Genética para Doença , Proteína Relacionada a TNFR Induzida por Glucocorticoide/genética , Memória Imunológica , Interleucina-2/genética , Interleucina-2/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Fenótipo , Placa Aterosclerótica , Receptores de LDL/deficiência , Receptores de LDL/genética , Índice de Gravidade de Doença , Transdução de Sinais , Linfócitos T Reguladores/imunologia , Timo/imunologia , Timo/metabolismo , Fatores de Necrose Tumoral/metabolismo
8.
Nanomedicine ; 12(6): 1463-70, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27015770

RESUMO

Atherosclerosis is a lipid-driven inflammatory disease, for which nanomedicinal interventions are under evaluation. Previously, we showed that liposomal nanoparticles loaded with prednisolone (LN-PLP) accumulated in plaque macrophages, however, induced proatherogenic effects in patients. Here, we confirmed in low-density lipoprotein receptor knockout (LDLr(-/-)) mice that LN-PLP accumulates in plaque macrophages. Next, we found that LN-PLP infusions at 10mg/kg for 2weeks enhanced monocyte recruitment to plaques. In follow up, after 6weeks of LN-PLP exposure we observed (i) increased macrophage content, (ii) more advanced plaque stages, and (iii) larger necrotic core sizes. Finally, in vitro studies showed that macrophages become lipotoxic after LN-PLP exposure, exemplified by enhanced lipid loading, ER stress and apoptosis. These findings indicate that liposomal prednisolone may paradoxically accelerate atherosclerosis by promoting macrophage lipotoxicity. Hence, future (nanomedicinal) drug development studies are challenged by the multifactorial nature of atherosclerotic inflammation.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/patologia , Prednisolona/administração & dosagem , Animais , Humanos , Lipossomos , Macrófagos/patologia , Camundongos , Placa Aterosclerótica
9.
Thromb Haemost ; 113(3): 473-81, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25589344

RESUMO

Monocytes/macrophages respond to external stimuli with rapid changes in the expression of numerous inflammation-related genes to undergo polarisation towards the M1 (pro-inflammatory) or M2 (anti-inflammatory) phenotype. We have previously shown that, independently of Toll-like receptor activation, extracellular RNA (eRNA) could exert pro-thrombotic and pro-inflammatory properties in the cardiovascular system to provoke cytokine mobilisation. Here, mouse bone marrow-derived-macrophages (BMDM) differentiated with mouse macrophage-colony-stimulating factor (M-CSF) were found to be skewed towards the M1 phenotype when exposed to eRNA. This resulted in up-regulated expression of inflammatory markers such as Tnf-α and Il-6, together with Il-12 and iNOS, whereas anti-inflammatory genes such as chitinase-like proteins (Ym1/2) and macrophage mannose receptor-2 (Cd206) were significantly down-regulated. Human peripheral blood monocytes were treated with eRNA and analysed by micro-array analysis of the whole human genome, revealing an up-regulation of 79 genes by at least four-fold; 27 of which are related to signal transduction and 15 genes associated with inflammatory response. In accordance with the proposed actions of eRNA as a pro-inflammatory "alarm signal", these data shed light on the role of eRNA in the context of chronic inflammatory diseases such as atherosclerosis.


Assuntos
Diferenciação Celular , Linhagem da Célula , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , RNA/metabolismo , Animais , Biomarcadores/sangue , Células Cultivadas , Citocinas/genética , Citocinas/imunologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Humanos , Mediadores da Inflamação/imunologia , Macrófagos/imunologia , Camundongos Endogâmicos C57BL , Monócitos/imunologia , Fenótipo , Fatores de Tempo
10.
Arterioscler Thromb Vasc Biol ; 35(2): 323-31, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25524771

RESUMO

OBJECTIVE: Macrophage foam cell formation is a key feature of atherosclerosis. Recent studies have shown that specific microRNAs (miRs) are regulated in modified low-density lipoprotein-treated macrophages, which can affect the cellular cholesterol homeostasis. Undertaking a genome-wide screen of miRs regulated in primary macrophages by modified low-density lipoprotein, miR-302a emerged as a potential candidate that may play a key role in macrophage cholesterol homeostasis. APPROACH AND RESULTS: The objective of this study was to assess the involvement of miR-302a in macrophage lipid homeostasis and if it can influence circulating lipid levels and atherosclerotic development when it is inhibited in a murine atherosclerosis model. We found that transfection of primary macrophages with either miR-302a or anti-miR-302a regulated the expression of ATP-binding cassette (ABC) transporter ABCA1 mRNA and protein. Luciferase reporter assays showed that miR-302a repressed the 3' untranslated regions (UTR) activity of mouse Abca1 by 48% and human ABCA1 by 45%. In addition, transfection of murine macrophages with miR-302a attenuated cholesterol efflux to apolipoprotein A-1 (apoA-1) by 38%. Long-term in vivo administration of anti-miR-302a to mice with low-density lipoprotein receptor deficiency (Ldlr(-/-)) fed an atherogenic diet led to an increase in ABCA1 in the liver and aorta as well as an increase in circulating plasma high-density lipoprotein levels by 35% compared with that of control mice. The anti-miR-302a-treated mice also displayed reduced atherosclerotic plaque size by ≈25% and a more stable plaque morphology with reduced signs of inflammation. CONCLUSIONS: These studies identify miR-302a as a novel modulator of cholesterol efflux and a potential therapeutic target for suppressing atherosclerosis.


Assuntos
Aorta/metabolismo , Doenças da Aorta/sangue , Aterosclerose/sangue , Colesterol/sangue , Macrófagos/metabolismo , MicroRNAs/metabolismo , Regiões 3' não Traduzidas , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Animais , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Doenças da Aorta/prevenção & controle , Apolipoproteína A-I/sangue , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Células COS , Chlorocebus aethiops , Dieta Hiperlipídica , Modelos Animais de Doenças , Homeostase , Humanos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Placa Aterosclerótica , Receptores de LDL/deficiência , Receptores de LDL/genética , Fatores de Tempo , Transfecção
11.
Arterioscler Thromb Vasc Biol ; 35(2): 309-11, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25524774

RESUMO

OBJECTIVE: The aim of this study was to investigate the role of cluster of differentiation 43 (CD43), an integral membrane glycoprotein with both proadhesive and antiadhesive activities, in atherosclerosis. APPROACH AND RESULTS: Low-density lipoprotein receptor-deficient mice were lethally irradiated and reconstituted with either bone marrow from CD43(-/-) mice or from wild-type controls. We found that mice lacking the CD43 on their leukocytes had significantly less severe atherosclerosis and that, contrary to our expectation, macrophage infiltration into the vessel wall was not affected by the lack of CD43 in the leukocytes. However, we found that CD43 mediates cholesterol homeostasis in macrophages by facilitating cholesterol efflux. This resulted in a significant reduction in storage of cholesterol in the aorta of mice lacking CD43 in the leukocytes. CONCLUSIONS: CD43 may be an important mediator of macrophage lipid homeostasis, thereby affecting macrophage foam cell formation and ultimately atherosclerotic plaque development.


Assuntos
Aorta/metabolismo , Doenças da Aorta/prevenção & controle , Aterosclerose/prevenção & controle , Leucócitos/metabolismo , Leucossialina/metabolismo , Animais , Aorta/imunologia , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/imunologia , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/imunologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Células Cultivadas , Colesterol/metabolismo , Modelos Animais de Doenças , Regulação para Baixo , Leucócitos/imunologia , Leucossialina/genética , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placa Aterosclerótica , Receptores de LDL/deficiência , Receptores de LDL/genética , Fatores de Tempo
13.
EMBO Mol Med ; 6(9): 1124-32, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25007801

RESUMO

Macrophages are key immune cells found in atherosclerotic plaques and critically shape atherosclerotic disease development. Targeting the functional repertoire of macrophages may hold novel approaches for future atherosclerosis management. Here, we describe a previously unrecognized role of the epigenomic enzyme Histone deacetylase 3 (Hdac3) in regulating the atherosclerotic phenotype of macrophages. Using conditional knockout mice, we found that myeloid Hdac3 deficiency promotes collagen deposition in atherosclerotic lesions and thus induces a stable plaque phenotype. Also, macrophages presented a switch to anti-inflammatory wound healing characteristics and showed improved lipid handling. The pro-fibrotic phenotype was directly linked to epigenetic regulation of the Tgfb1 locus upon Hdac3 deletion, driving smooth muscle cells to increased collagen production. Moreover, in humans, HDAC3 was the sole Hdac upregulated in ruptured atherosclerotic lesions, Hdac3 associated with inflammatory macrophages, and HDAC3 expression inversely correlated with pro-fibrotic TGFB1 expression. Collectively, we show that targeting the macrophage epigenome can improve atherosclerosis outcome and we identify Hdac3 as a potential novel therapeutic target in cardiovascular disease.


Assuntos
Aterosclerose/genética , Histona Desacetilases/fisiologia , Macrófagos/fisiologia , Acetilação , Animais , Aterosclerose/imunologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Colágeno/metabolismo , Epigênese Genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Metabolismo dos Lipídeos/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo
14.
FASEB J ; 28(5): 2202-13, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24481967

RESUMO

Modulation of hematopoietic stem and progenitor cells (HSPCs) determines immune cell function. In this study, we investigated how hypercholesterolemia affects HSPC biology and atherosclerosis. Hypercholesterolemia induced loss of HSPC quiescence, characterized by increased proliferation and expression of cyclin B1, C1, and D1, and a decreased expression of Rb, resulting in a 3.6- fold increase in the number of HSPCs in hypercholesterolemic Ldlr(-/-) mice. Competitive bone marrow (BM) transplantations showed that a hypercholesterolemic BM microenvironment activates HSPCs and skews their development toward myeloid lineages. Conversely, hypercholesterolemia-primed HSPCs acquired an enhanced propensity to generate myeloid cells, especially granulocytes and Ly6C(high) monocytes, even in a normocholesterolemic BM microenvironment. In conformity, macrophages differentiated from hypercholesterolemia-primed HSPCs produced 17.0% more TNF-α, 21.3% more IL-6, and 10.5% more MCP1 than did their normocholesterolemic counterparts. Hypercholesterolemia-induced priming of HSPCs generated leukocytes that more readily migrated into the artery, which resulted in a 2.1-fold increase in atherosclerotic plaque size. In addition, these plaques had a more advanced phenotype and exhibited a 1.2-fold increase in macrophages and 1.8-fold increase in granulocytes. These results identify hypercholesterolemia-induced activation and priming of HSPCs as a novel pathway in the development of atherosclerosis. Inhibition of this proinflammatory differentiation pathway on the HSPC level has the potential to reduce atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Células-Tronco Hematopoéticas/citologia , Hipercolesterolemia/metabolismo , Animais , Aterosclerose/patologia , Transplante de Medula Óssea , Diferenciação Celular , Células Cultivadas , Granulócitos/metabolismo , Inflamação , Interleucina-6/metabolismo , Lipoproteínas/sangue , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Fenótipo , Receptores de LDL/genética , Fator de Necrose Tumoral alfa/metabolismo
15.
Circulation ; 129(5): 598-606, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24201302

RESUMO

BACKGROUND: Atherosclerosis and vascular remodeling after injury are driven by inflammation and mononuclear cell infiltration. Extracellular RNA (eRNA) has recently been implicated to become enriched at sites of tissue damage and to act as a proinflammatory mediator. Here, we addressed the role of eRNA in high-fat diet-induced atherosclerosis and neointima formation after injury in atherosclerosis-prone mice. METHODS AND RESULTS: The presence of eRNA was revealed in atherosclerotic lesions from high-fat diet-fed low-density lipoprotein receptor-deficient (Ldlr(-/-)) mice in a time-progressive fashion. RNase activity in plasma increased within the first 2 weeks (44±9 versus 70±7 mU/mg protein; P=0.0012), followed by a decrease to levels below baseline after 4 weeks of high-fat diet (44±9 versus 12±2 mU/mg protein; P<0.0001). Exposure of bone marrow-derived macrophages to eRNA resulted in a concentration-dependent upregulation of the proinflammatory mediators tumor necrosis factor-α, arginase-2, interleukin-1ß, interleukin-6, and interferon-γ. In a model of accelerated atherosclerosis after arterial injury in apolipoprotein E-deficient (ApoE(-/-)) mice, treatment with RNase1 diminished the increased plasma level of eRNA evidenced after injury. Likewise, RNase1 administration reduced neointima formation in comparison with vehicle-treated ApoE(-/-) controls (25.0±6.2 versus 46.9±6.9×10(3) µm(2), P=0.0339) and was associated with a significant decrease in plaque macrophage content. Functionally, RNase1 treatment impaired monocyte arrest on activated smooth muscle cells under flow conditions in vitro and inhibited leukocyte recruitment to injured carotid arteries in vivo. CONCLUSIONS: Because eRNA is associated with atherosclerotic lesions and contributes to inflammation-dependent plaque progression in atherosclerosis-prone mice, its targeting with RNase1 may serve as a new treatment option against atherosclerosis.


Assuntos
Líquido Extracelular/fisiologia , Placa Aterosclerótica/sangue , RNA/fisiologia , Ribonucleases/fisiologia , Animais , Aterosclerose/sangue , Aterosclerose/induzido quimicamente , Aterosclerose/tratamento farmacológico , Dieta Hiperlipídica/efeitos adversos , Líquido Extracelular/enzimologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Placa Aterosclerótica/induzido quimicamente , Placa Aterosclerótica/tratamento farmacológico , RNA/sangue , Ribonucleases/uso terapêutico
16.
Curr Opin Lipidol ; 24(6): 518-24, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24184937

RESUMO

PURPOSE OF REVIEW: The role of lymphocytes in the chronic inflammatory disease atherosclerosis has emerged over the past decade. Co-stimulatory molecules of the heterogeneous tumor necrosis factor receptor superfamily play a pivotal role in lymphocyte activation, proliferation and differentiation. Here we describe the immune modulatory properties and mechanisms of four tumor necrosis factor receptor superfamily members in atherosclerosis. RECENT FINDINGS: CD40/CD40L, OX40L/OX40, CD70/CD27 and CD137/CD137L are present in human atherosclerotic plaques and have shown strong immune modulatory functions in atherosclerosis, resulting in either atherogenic or atheroprotective effects in mouse models of atherosclerosis. SUMMARY: Insight into the immune modulatory mechanisms of co-stimulatory interactions in atherosclerosis can contribute to clinical exploitation of these interactions in the treatment of cardiovascular disease.


Assuntos
Aterosclerose/etiologia , Aterosclerose/metabolismo , Linfócitos/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Animais , Humanos
17.
J Leukoc Biol ; 93(5): 771-80, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23444136

RESUMO

Selk is an ER transmembrane protein important for calcium flux and macrophage activation, but its role in foam cell formation and atherosclerosis has not been evaluated. BMDMs from Selk(-/-) mice exhibited decreased uptake of modLDL and foam cell formation compared with WT controls, and the differences were eliminated with anti-CD36 blocking antibody. CD36 expression was decreased in TNF-α-stimulated Selk(-/-) BMDMs compared with WT controls. Fluorescence microscopy revealed TNF-α-induced clustering of CD36 in WT BMDMs indicative of lipid raft localization, which was absent in Selk(-/-) BMDMs. Fractionation revealed lower levels of CD36 reaching lipid rafts in TNF-α-stimulated Selk(-/-) BMDMs. Immunoprecipitation showed that Selk(-/-) BMDMs have decreased CD36 palmitoylation, which occurs at the ER membrane and is crucial for stabilizing CD36 expression and directing its localization to lipid rafts. To assess if this phenomenon had a role in atherogenesis, a HFD was fed to irradiated Ldlr(-/-) mice reconstituted with BM from Selk(-/-) or WT mice. Selk was detected in aortic plaques of controls, particularly in macrophages. Selk(-/-) in immune cells led to reduction in atherosclerotic lesion formation without affecting leukocyte migration into the arterial wall. These findings suggest that Selk is important for stable, localized expression of CD36 in macrophages during inflammation, thereby contributing to foam cell formation and atherogenesis.


Assuntos
Aterosclerose/etiologia , Antígenos CD36/metabolismo , Células Espumosas/fisiologia , Lipoilação , Macrófagos/metabolismo , Selenoproteínas/fisiologia , Animais , Células Cultivadas , Lipoproteínas LDL/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/farmacologia
18.
Arterioscler Thromb Vasc Biol ; 32(7): 1613-23, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22556330

RESUMO

OBJECTIVE: Inflammatory leukocyte accumulation drives atherosclerosis. Although monocytes/macrophages and polymorphonuclear neutrophilic leukocytes (PMN) contribute to lesion formation, sequelae of myeloproliferative disease remain to be elucidated. METHODS AND RESULTS: We used mice deficient in interferon regulatory factor 8 (IRF8(-/-)) in hematopoietic cells that develop a chronic myelogenous leukemia-like phenotype. Apolipoprotein E-deficient mice reconstituted with IRF8(-/-) or IRF8(-/-) apolipoprotein E-deficient bone marrow displayed an exacerbated atherosclerotic lesion formation compared with controls. The chronic myelogenous leukemia-like phenotype in mice with IRF8(-/-) bone marrow, reflected by an expansion of PMN in the circulation, was associated with an increased lesional accumulation and apoptosis of PMN, and enlarged necrotic cores. IRF8(-/-) compared with IRF8(+/+) PMN displayed unaffected reactive oxygen species formation and discharge of PMN granule components. In contrast, accumulating in equal numbers at sites of inflammation, IRF8(-/-) macrophages were defective in efferocytosis, lipid uptake, and interleukin-10 cytokine production. Importantly, depletion of PMN in low-density lipoprotein receptor or apolipoprotein E-deficient mice with IRF8(-/-) or IRF8(-/-) apolipoprotein E-deficient bone marrow abrogated increased lesion formation. CONCLUSIONS: These findings indicate that a chronic myelogenous leukemia-like phenotype contributes to accelerated atherosclerosis in mice. Among proatherosclerotic effects of other cell types, this, in part, is linked to an expansion of functionally intact PMN.


Assuntos
Aterosclerose/etiologia , Fatores Reguladores de Interferon/fisiologia , Animais , Apolipoproteínas E/fisiologia , Apoptose , Transplante de Medula Óssea , Permeabilidade Capilar , Feminino , Interleucina-10/biossíntese , Macrófagos/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/fisiologia , Peroxidase/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Receptores de LDL/fisiologia
19.
J Clin Invest ; 121(7): 2898-910, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21633167

RESUMO

Immune mechanisms are known to control the pathogenesis of atherosclerosis. However, the exact role of DCs, which are essential for priming of immune responses, remains elusive. We have shown here that the DC-derived chemokine CCL17 is present in advanced human and mouse atherosclerosis and that CCL17+ DCs accumulate in atherosclerotic lesions. In atherosclerosis-prone mice, Ccl17 deficiency entailed a reduction of atherosclerosis, which was dependent on Tregs. Expression of CCL17 by DCs limited the expansion of Tregs by restricting their maintenance and precipitated atherosclerosis in a mechanism conferred by T cells. Conversely, a blocking antibody specific for CCL17 expanded Tregs and reduced atheroprogression. Our data identify DC-derived CCL17 as a central regulator of Treg homeostasis, implicate DCs and their effector functions in atherogenesis, and suggest that CCL17 might be a target for vascular therapy.


Assuntos
Aterosclerose/imunologia , Quimiocina CCL17/imunologia , Células Dendríticas/imunologia , Homeostase , Linfócitos T Reguladores/imunologia , Animais , Transplante de Medula Óssea , Movimento Celular , Quimiocina CCL17/genética , Humanos , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Subpopulações de Linfócitos T/metabolismo
20.
Environ Entomol ; 39(3): 979-88, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20550813

RESUMO

Interactions of a biopesticidal formulation of steam distilled shoot extract of Mexican marigold, Tagetes minuta, and entomopathogenic fungi were evaluated for management of the sugarbeet root maggot, Tetanops myopaeformis (Röder). Shoot extract plus surfactant (E-Z Mulse) (=T. minuta oil) was used in a 65:35 ratio to test the hypothesis that this fungicidal and nematocidal biopesticide causes dose-dependent mortality and developmental arrest of T. myopaeformis but does not interfere with the action of entomopathogenic fungi when applied together. A soil-petri dish bioassay system was developed to test the hypothesis. For diapausing, nonfeeding but active 12-mo-old third-instar larvae, 0.5% T. minuta oil treatment (=0.325% active ingredient [AI]) was sufficient to prevent pupation without mortality, but 0.75% T. minuta oil treatment (=0.458% AI) was lethal for 93% of the test insects. The effect of T. minuta oil on fungal efficacy under simultaneous use was studied using a model system of two entomopathogenic fungi, Beauveria bassiana (Bals.) Vuillemin. TM28 and Metarhizium anisopliae variety anisopliae (Metsch.) Sorokin MA 1200, in a soil-based bioassay with larval sugarbeet root maggots. No adverse effects of T. minuta oil on action of entomopathogenic fungi and no synergy were found; an additive effect of the T. minuta oil and each fungal isolate separately was found.


Assuntos
Beauveria , Dípteros , Metarhizium , Controle Biológico de Vetores , Extratos Vegetais , Animais , Beta vulgaris/parasitologia , Larva , Óleos Voláteis , Brotos de Planta , Solo , Tagetes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...