Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Eur J Biochem ; 263(1): 137-44, 1999 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10429197

RESUMO

The photoreduction of the oxidized and the semiquinone form of flavodoxin from Synechocystis sp. PCC 6803 by the photosystem I (PSI) of wild-type Chlamydomonas reinhardtii and the mutant strains Lys35Asp, Lys35Glu and Lys35Arg was analysed by flash-absorption spectroscopy to investigate the role of residue Lys35 of the PSI subunit PsaC in flavodoxin reduction. For PSI preparations from C. reinhardtii the reduction of oxidized flavodoxin was monoexponential and approached limiting electron transfer rates similar to those of cyanobacterial PSI from the wild-type and the Lys35Arg mutant. For PSI from the Lys35Glu mutant, however, a approximately 2.5-fold smaller value was determined. The photoreduction of flavodoxin semiquinone by PSI from C. reinhardtii lacked fast first-order kinetic components and, in contrast with PSI from cyanobacteria, displayed only a single concentration-dependent phase. From this phase, second-order rate constants were calculated for wild-type PSI and PSI from the Lys35Arg mutant which were comparable to those of PSI from cyanobacteria. For PSI from the Lys35Glu and the Lys35Asp mutants the derived second-order rate constants were 19 and 10 times smaller. Thus, the inversion of charge at position 35 of PsaC negatively affects the rate of electron transfer to both forms of flavodoxin, whereas PSI complexes that retain a positive charge at this position show wild-type kinetics. However, the positive charge at this position of PsaC is not essential for flavodoxin photoreduction as the number of flavodoxin molecules reduced per PSI was similar for all of the PSI complexes investigated. In addition, chemical cross-linking assays showed that the binary cross-linking product between flavodoxin and PsaC of PSI from wild-type C. reinhardtii was not formed with PSI complexes from the Lys13Asp and Lys35Glu mutants. This indicates that Lys35 of PsaC is probably essential for the chemical cross-link between PsaC and flavodoxin. Taken together, these experiments show that Lys35 of PsaC plays a strikingly similar role in the electron transfer from PSI to both ferredoxin and flavodoxin.


Assuntos
Chlamydomonas reinhardtii/metabolismo , Chlamydomonas reinhardtii/efeitos da radiação , Flavodoxina/metabolismo , Flavodoxina/efeitos da radiação , Proteínas de Membrana , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/efeitos da radiação , Complexo de Proteína do Fotossistema I , Proteínas/metabolismo , Animais , Chlamydomonas reinhardtii/genética , Reagentes de Ligações Cruzadas , Transporte de Elétrons , Ferredoxinas/metabolismo , Flavodoxina/química , Cinética , Lisina/química , Mutagênese Sítio-Dirigida , Oxirredução , Fotoquímica , Mutação Puntual , Proteínas/química , Proteínas/genética , Espectrofotometria
2.
Biochemistry ; 37(27): 9759-67, 1998 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-9657689

RESUMO

The photoreduction of the oxidized and the semiquinone form of flavodoxin by photosystem I particles (PSI) from the wild type and a psaE deletion strain from the cyanobacterium Synechocystis sp. PCC 6803 was analyzed by flash-absorption spectroscopy to investigate a possible involvement of the PsaE subunit in this photoreduction process. The kinetics of the reduction of oxidized flavodoxin display a single-exponential component for both PSI preparations. Limiting electron transfer rates kobs of approximately 500 and approximately 900 s -1 are deduced for the wild type and PSI from the psaE-less mutant, respectively, indicating that the PsaE subunit is not important for this photoreduction process. In the case of wild-type PSI, the reduction of flavodoxin semiquinone is a biphasic process, displaying a fast first-order phase with a t1/2 of approximately 13 micro(s) which is then followed by a slower, concentration-dependent phase, for which a second-order rate constant k2 of 2.2 x 10(8) M-1 cm-1 is calculated. In contrast, photoreduction of the semiquinone by PSI from the psaE-less mutant is monoexponential, displaying only one second-order component with a second-order rate constant similar to those observed for wild-type PSI (k2 = 1.5 x 10(8) M-1 cm-1). The fast first-order component which is interpreted as an electron transfer process within a preformed complex between flavodoxin semiquinone and PSI is almost completely absent in the reduction of flavodoxin by the PsaE-less PSI. A similar loss of the fast phase is also observed for the photoreduction of flavodoxin semiquinone by PSI from a Synechococcus elongatus psaE-less mutant. Upon reconstitution of isolated PsaE to the PsaE-less PSI in vitro, approximately 80% of the fast first-order kinetic component is recovered, indicating that PsaE is required for high-affinity binding of the flavodoxin semiquinone to PSI. In addition, chemical cross-linking assays show that flavodoxin can no longer be cross-linked to PSI in detectable amounts when PsaE is missing on the reaction center. Taken together, these experiments indicate that the PsaE subunit is required for complex formation between PSI and flavodoxin but is not required for an efficient forward electron transfer from photosystem I to both forms of flavodoxin.


Assuntos
Cianobactérias/metabolismo , Flavodoxina/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Complexo de Proteína do Fotossistema I , Reagentes de Ligações Cruzadas/metabolismo , Etildimetilaminopropil Carbodi-Imida/metabolismo , Mononucleotídeo de Flavina/análogos & derivados , Mononucleotídeo de Flavina/metabolismo , Flavodoxina/química , Substâncias Macromoleculares , Oxirredução , Fotoquímica , Complexo de Proteínas do Centro de Reação Fotossintética/química , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA