Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gen Subj ; 1868(7): 130619, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643888

RESUMO

The sodium potassium pump, Na,K-ATPase (NKA), is an integral plasma membrane protein, expressed in all eukaryotic cells. It is responsible for maintaining the transmembrane Na+ gradient and is the major determinant of the membrane potential. Self-interaction and oligomerization of NKA in cell membranes has been proposed and discussed but is still an open question. Here, we have used a combination of FRET and Fluorescence Correlation Spectroscopy, FRET-FCS, to analyze NKA in the plasma membrane of living cells. Click chemistry was used to conjugate the fluorescent labels Alexa 488 and Alexa 647 to non-canonical amino acids introduced in the NKA α1 and ß1 subunits. We demonstrate that FRET-FCS can detect an order of magnitude lower concentration of green-red labeled protein pairs in a single-labeled red and green background than what is possible with cross-correlation (FCCS). We show that a significant fraction of NKA is expressed as a dimer in the plasma membrane. We also introduce a method to estimate not only the number of single and double labeled NKA, but the number of unlabeled, endogenous NKA and estimate the density of endogenous NKA at the plasma membrane to 1400 ± 800 enzymes/µm2.

2.
Cell Rep Methods ; 3(11): 100626, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37935196

RESUMO

Stop codon suppression using dedicated tRNA/aminoacyl-tRNA synthetase (aaRS) pairs allows for genetically encoded, site-specific incorporation of non-canonical amino acids (ncAAs) as chemical handles for protein labeling and modification. Here, we demonstrate that piggyBac-mediated genomic integration of archaeal pyrrolysine tRNA (tRNAPyl)/pyrrolysyl-tRNA synthetase (PylRS) or bacterial tRNA/aaRS pairs, using a modular plasmid design with multi-copy tRNA arrays, allows for homogeneous and efficient genetically encoded ncAA incorporation in diverse mammalian cell lines. We assess opportunities and limitations of using ncAAs for fluorescent labeling applications in stable cell lines. We explore suppression of ochre and opal stop codons and finally incorporate two distinct ncAAs with mutually orthogonal click chemistries for site-specific, dual-fluorophore labeling of a cell surface receptor on live mammalian cells.


Assuntos
Aminoacil-tRNA Sintetases , Código Genético , Códon de Terminação/genética , Código Genético/genética , RNA de Transferência/genética , Aminoácidos/genética , Aminoacil-tRNA Sintetases/genética
3.
Methods Mol Biol ; 2676: 169-180, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37277632

RESUMO

Genetic code expansion via amber suppression allows cotranslational, site-specific introduction of nonnatural chemical groups into proteins in the living cell. The archaeal pyrrolysine-tRNA/pyrrolysine-tRNA synthetase (PylT/RS) pair from Methanosarcina mazei (Mma) has been established for incorporation of a wide range of noncanonical amino acids (ncAAs) in mammalian cells. Once integrated in an engineered protein, ncAAs allow for simple click-chemistry derivatization, photo-cage control of enzyme activity, and site-specific placement of posttranslational modifications. We previously described a modular amber suppression plasmid system for generating stable cell lines via piggyBac transposition in a range of mammalian cells. Here we detail a general protocol for the generation of CRISPR-Cas9 knock-in cell lines using the same plasmid system. The knock-in strategy relies on CRISPR-Cas9-induced double-strand breaks (DSBs) and nonhomologous end joining (NHEJ) repair to target the PylT/RS expression cassette to the AAVS1 safe harbor locus in human cells. MmaPylRS expression from this single locus is sufficient for efficient amber suppression when the cells are subsequently transfected transiently with a PylT/gene of interest plasmid.


Assuntos
Aminoácidos , Sistemas CRISPR-Cas , Animais , Humanos , Códon de Terminação , Sistemas CRISPR-Cas/genética , Aminoácidos/química , Proteínas/metabolismo , Linhagem Celular , Mamíferos/genética
4.
Cell Death Dis ; 13(11): 997, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36433934

RESUMO

TP53 nonsense mutations in cancer produce truncated inactive p53 protein. We show that 5-FU metabolite 5-Fluorouridine (FUr) induces full-length p53 in human tumor cells carrying R213X nonsense mutant TP53. Ribosome profiling visualized translational readthrough at the R213X premature stop codon and demonstrated that FUr-induced readthrough is less permissive for canonical stop codon readthrough compared to aminoglycoside G418. FUr is incorporated into mRNA and can potentially base-pair with guanine, allowing insertion of Arg tRNA at the TP53 R213X UGA premature stop codon and translation of full-length wild-type p53. We confirmed that full-length p53 rescued by FUr triggers tumor cell death by apoptosis. FUr also restored full-length p53 in TP53 R213X mutant human tumor xenografts in vivo. Thus, we demonstrate a novel strategy for therapeutic rescue of nonsense mutant TP53 and suggest that FUr should be explored for treatment of patients with TP53 nonsense mutant tumors.


Assuntos
Neoplasias , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Códon sem Sentido/genética , Biossíntese de Proteínas , Neoplasias/genética
5.
Front Chem ; 9: 768535, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858945

RESUMO

Bioorthogonal chemistry allows rapid and highly selective reactivity in biological environments. The copper-catalyzed azide-alkyne cycloaddition (CuAAC) is a classic bioorthogonal reaction routinely used to modify azides or alkynes that have been introduced into biomolecules. Amber suppression is an efficient method for incorporating such chemical handles into proteins on the ribosome, in which noncanonical amino acids (ncAAs) are site specifically introduced into the polypeptide in response to an amber (UAG) stop codon. A variety of ncAA structures containing azides or alkynes have been proven useful for performing CuAAC chemistry on proteins. To improve CuAAC efficiency, biologically incorporated alkyne groups can be reacted with azide substrates that contain copper-chelating groups. However, the direct incorporation of copper-chelating azides into proteins has not been explored. To remedy this, we prepared the ncAA paz-lysine (PazK), which contains a picolyl azide motif. We show that PazK is efficiently incorporated into proteins by amber suppression in mammalian cells. Furthermore, PazK-labeled proteins show improved reactivity with alkyne reagents in CuAAC.

6.
Chembiochem ; 22(22): 3208-3213, 2021 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-34431592

RESUMO

Human induced pluripotent stem cell (hiPSC) technology has revolutionized studies on human biology. A wide range of cell types and tissue models can be derived from hiPSCs to study complex human diseases. Here, we use PiggyBac-mediated transgenesis to engineer hiPSCs with an expanded genetic code. We demonstrate that genomic integration of expression cassettes for a pyrrolysyl-tRNA synthetase (PylRS), pyrrolysyl-tRNA (PylT) and the target protein of interest enables site-specific incorporation of a non-canonical amino acid (ncAA) in response to an amber stop codon. Neural stem cells, neurons and brain organoids derived from the engineered hiPSCs continue to express the amber suppression machinery and produce ncAA-bearing reporter. The incorporated ncAA can serve as a minimal bioorthogonal handle for further modifications by labeling with fluorescent dyes. Site-directed ncAA mutagenesis will open a wide range of applications to probe and manipulate proteins in brain organoids and other hiPSC-derived cell types and complex tissue models.


Assuntos
Aminoácidos/metabolismo , Encéfalo/metabolismo , Engenharia Celular , Células-Tronco Pluripotentes Induzidas/metabolismo , Organoides/metabolismo , Aminoácidos/genética , Código Genético , Humanos
7.
Nat Commun ; 12(1): 3695, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140485

RESUMO

Serological testing is essential to curb the consequences of the COVID-19 pandemic. However, most assays are still limited to single analytes and samples collected within healthcare. Thus, we establish a multianalyte and multiplexed approach to reliably profile IgG and IgM levels against several versions of SARS-CoV-2 proteins (S, RBD, N) in home-sampled dried blood spots (DBS). We analyse DBS collected during spring of 2020 from 878 random and undiagnosed individuals from the population in Stockholm, Sweden, and use classification approaches to estimate an accumulated seroprevalence of 12.5% (95% CI: 10.3%-14.7%). This includes 5.4% of the samples being IgG+IgM+ against several SARS-CoV-2 proteins, as well as 2.1% being IgG-IgM+ and 5.0% being IgG+IgM- for the virus' S protein. Subjects classified as IgG+ for several SARS-CoV-2 proteins report influenza-like symptoms more frequently than those being IgG+ for only the S protein (OR = 6.1; p < 0.001). Among all seropositive cases, 30% are asymptomatic. Our strategy enables an accurate individual-level and multiplexed assessment of antibodies in home-sampled blood, assisting our understanding about the undiagnosed seroprevalence and diversity of the immune response against the coronavirus.


Assuntos
Coleta de Amostras Sanguíneas/métodos , Teste Sorológico para COVID-19/métodos , COVID-19/imunologia , Imunidade Humoral , Adulto , Idoso , Anticorpos Antivirais/imunologia , COVID-19/etiologia , Teste em Amostras de Sangue Seco , Feminino , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , Suécia , Adulto Jovem
8.
Cell Rep ; 31(12): 107811, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32579937

RESUMO

The pyrrolysyl-tRNA/pyrrolysyl-tRNA synthetase (PylT/RS) pair from the archaeon Methanosarcina mazei (Mma) is widely used in protein engineering to site-specifically introduce noncanonical amino acids (ncAAs) through nonsense codon suppression. Here, we engineer the PylT/RS pair encoded by Methanogenic archaeon ISO4-G1 (G1) to be orthogonal to Mma PylT/RS and alter the G1 PylRS active site to accept a complementary ncAA spectrum. We combine the resulting mutual orthogonal pairs for site-specific dual ncAA incorporation of two lysine analogs with high selectivity and efficiency. Demonstrating the robustness of the system, we incorporate two ncAAs with compatible bioorthogonal reactivity into a Notch receptor, as well as a G protein-coupled receptor. We show that selective and site-specific incorporation of two ncAAs allows for two-color bioorthogonal labeling as well as chemical-controlled crosslinking of surface proteins on live mammalian cells.


Assuntos
Aminoácidos/metabolismo , Reagentes de Ligações Cruzadas/química , Mamíferos/metabolismo , Proteínas/metabolismo , Coloração e Rotulagem , Aminoacil-tRNA Sintetases/metabolismo , Animais , Sequência de Bases , Linhagem Celular , Sobrevivência Celular , Células HEK293 , Humanos , Lisina/metabolismo , Methanosarcina/metabolismo , Conformação de Ácido Nucleico , RNA de Transferência/química , RNA de Transferência/genética , Receptores de Superfície Celular/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Especificidade por Substrato
9.
ACS Chem Biol ; 13(11): 3087-3096, 2018 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-30260624

RESUMO

Genetic code expansion via stop codon suppression is a powerful technique for engineering proteins in mammalian cells with site-specifically encoded noncanonical amino acids (ncAAs). Current methods rely on very few available tRNA/aminoacyl-tRNA synthetase pairs orthogonal in mammalian cells, the pyrrolysyl tRNA/aminoacyl-tRNA synthetase pair from Methanosarcina mazei ( Mma PylRS/PylT) being the most active and versatile to date. We found a pyrrolysyl tRNA/aminoacyl-tRNA synthetase pair from the human gut archaeon Methanomethylophilus alvus Mx1201 (Mx1201 PylRS/PylT) to be active and orthogonal in mammalian cells. We show that this PylRS enzyme can be engineered to expand its ncAA substrate spectrum. We find that due to the large evolutionary distance of the two pairs, Mx1201 PylRS/PylT is partially orthogonal to Mma PylRS/PylT. Through rational mutation of Mx1201 PylT, we abolish its noncognate interaction with Mma PylRS, creating two mutually orthogonal PylRS/PylT pairs. Combined in the same cell, we show that the two pairs can site-selectively introduce two different ncAAs in response to two distinct stop codons. Our work expands the repertoire of mutually orthogonal tools for genetic code expansion in mammalian cells and provides the basis for advanced in vivo protein engineering applications for cell biology and protein production.


Assuntos
Aminoacil-tRNA Sintetases/metabolismo , Euryarchaeota/enzimologia , RNA de Transferência Aminoácido-Específico/metabolismo , Aminoacil-tRNA Sintetases/química , Aminoacil-tRNA Sintetases/genética , Sítios de Ligação , Códon de Terminação/genética , Células HEK293 , Humanos , Lisina/análogos & derivados , Lisina/genética , Mutação , Engenharia de Proteínas/métodos , RNA de Transferência Aminoácido-Específico/genética , Especificidade por Substrato
10.
RNA Biol ; 15(4-5): 508-517, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28726545

RESUMO

Endoribonuclease toxins (ribotoxins) are produced by bacteria and fungi to respond to stress, eliminate non-self competitor species, or interdict virus infection. PrrC is a bacterial ribotoxin that targets and cleaves tRNALysUUU in the anticodon loop. In vitro studies suggested that the post-transcriptional modification threonylcarbamoyl adenosine (t6A) is required for PrrC activity but this prediction had never been validated in vivo. Here, by using t6A-deficient yeast derivatives, it is shown that t6A is a positive determinant for PrrC proteins from various bacterial species. Streptococcus mutans is one of the few bacteria where the t6A synthesis gene tsaE (brpB) is dispensable and its genome encodes a PrrC toxin. We had previously shown using an HPLC-based assay that the S. mutans tsaE mutant was devoid of t6A. However, we describe here a novel and a more sensitive hybridization-based t6A detection method (compared to HPLC) that showed t6A was still present in the S. mutans ΔtsaE, albeit at greatly reduced levels (93% reduced compared with WT). Moreover, mutants in 2 other S. mutans t6A synthesis genes (tsaB and tsaC) were shown to be totally devoid of the modification thus confirming its dispensability in this organism. Furthermore, analysis of t6A modification ratios and of t6A synthesis genes mRNA levels in S. mutans suggest they may be regulated by growth phase.


Assuntos
Adenosina/análogos & derivados , Proteínas de Bactérias/genética , Endorribonucleases/genética , Processamento Pós-Transcricional do RNA , RNA de Transferência de Lisina/genética , Streptococcus mutans/genética , Adenosina/deficiência , Adenosina/genética , Anticódon/química , Anticódon/metabolismo , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/biossíntese , Toxinas Bacterianas/genética , Endorribonucleases/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Conformação de Ácido Nucleico , Biossíntese de Proteínas , RNA de Transferência de Lisina/metabolismo , Streptococcus mutans/metabolismo
11.
EMBO J ; 33(14): 1514-26, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-24872509

RESUMO

The conserved eukaryotic Pan2-Pan3 deadenylation complex shortens cytoplasmic mRNA 3' polyA tails to regulate mRNA stability. Although the exonuclease activity resides in Pan2, efficient deadenylation requires Pan3. The mechanistic role of Pan3 is unclear. Here, we show that Pan3 binds RNA directly both through its pseudokinase/C-terminal domain and via an N-terminal zinc finger that binds polyA RNA specifically. In contrast, isolated Pan2 is unable to bind RNA. Pan3 binds to the region of Pan2 that links its N-terminal WD40 domain to the C-terminal part that contains the exonuclease, with a 2:1 stoichiometry. The crystal structure of the Pan2 linker region bound to a Pan3 homodimer shows how the unusual structural asymmetry of the Pan3 dimer is used to form an extensive high-affinity interaction. This binding allows Pan3 to supply Pan2 with substrate polyA RNA, facilitating efficient mRNA deadenylation by the intact Pan2-Pan3 complex.


Assuntos
Chaetomium/química , Exorribonucleases/metabolismo , Modelos Moleculares , Complexos Multiproteicos/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Bases , Cromatografia de Afinidade , Clonagem Molecular , Ensaio de Desvio de Mobilidade Eletroforética , Exorribonucleases/química , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Dados de Sequência Molecular , Complexos Multiproteicos/química , Proteínas de Ligação a Poli(A)/metabolismo , Ligação Proteica , Multimerização Proteica , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Sefarose , Análise de Sequência de DNA
12.
RNA ; 18(9): 1716-24, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22836353

RESUMO

PaOrf2 and γ-toxin subunits of Pichia acaciae toxin (PaT) and Kluyveromyces lactis zymocin are tRNA anticodon nucleases. These secreted ribotoxins are assimilated by Saccharomyces cerevisiae, wherein they arrest growth by depleting specific tRNAs. Toxicity can be recapitulated by induced intracellular expression of PaOrf2 or γ-toxin in S. cerevisiae. Mutational analysis of γ-toxin has identified amino acids required for ribotoxicity in vivo and RNA transesterification in vitro. Here, we report that PaOrf2 residues Glu9 and His287 (putative counterparts of γ-toxin Glu9 and His209) are essential for toxicity. Our results suggest a similar basis for RNA transesterification by PaOrf2 and γ-toxin, despite their dissimilar primary structures and distinctive tRNA target specificities. PaOrf2 makes two sequential incisions in tRNA, the first of which occurs 3' from the mcm(5)s(2)U wobble nucleoside and depends on mcm(5). A second incision two nucleotides upstream results in the net excision of a di-nucleotide. Expression of phage and plant tRNA repair systems can relieve PaOrf2 toxicity when tRNA cleavage is restricted to the secondary site in elp3 cells that lack the mcm(5) wobble U modification. Whereas the endogenous yeast tRNA ligase Trl1 can heal tRNA halves produced by PaOrf2 cleavage in elp3 cells, its RNA sealing activity is inadequate to complete the repair. Compatible sealing activity can be provided in trans by plant tRNA ligase. The damage-rescuing ability of tRNA repair systems is lost when PaOrf2 can break tRNA at both sites. These results highlight the logic of a two-incision mechanism of tRNA anticodon damage that evades productive repair by tRNA ligases.


Assuntos
Fatores Matadores de Levedura/metabolismo , RNA de Transferência/metabolismo , Ribonucleases/metabolismo , Sequência de Aminoácidos , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Fatores Matadores de Levedura/química , Fatores Matadores de Levedura/genética , Modelos Biológicos , Dados de Sequência Molecular , Mutação , Filogenia , Ribonucleases/química , Ribonucleases/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
13.
Virology ; 427(2): 144-50, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22386822

RESUMO

Breakage of tRNA by Escherichia coli anticodon nuclease PrrC (EcoPrrC) underlies a host antiviral response to phage T4 infection. Expression of EcoPrrC is cytocidal in yeast, signifying that PrrC ribotoxicity crosses phylogenetic domain boundaries. EcoPrrC consists of an N-terminal NTPase module that resembles ABC transporters and a C-terminal nuclease module that is sui generis. PrrC homologs are prevalent in many other bacteria. Here we report that Haemophilus influenzae PrrC is toxic in E. coli and yeast. To illuminate structure-activity relations, we conducted a new round of mutational analysis of EcoPrrC guided by primary structure conservation among toxic PrrC homologs. We indentify 17 candidate active site residues in the NTPase module that are essential for toxicity in yeast when EcoPrrC is expressed at high gene dosage. Their functions could be educed by integrating mutational data with the atomic structure of the transition-state complex of a homologous ABC protein.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/virologia , Nucleosídeo-Trifosfatase/metabolismo , Estrutura Terciária de Proteína/fisiologia , Ribonucleases/metabolismo , Sequência de Aminoácidos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Nucleosídeo-Trifosfatase/química , Nucleosídeo-Trifosfatase/genética , Plasmídeos , Regiões Promotoras Genéticas , Conformação Proteica , Estrutura Terciária de Proteína/genética , Ribonucleases/química , Ribonucleases/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Relação Estrutura-Atividade
14.
RNA ; 18(1): 145-54, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22101242

RESUMO

Breakage of tRNA(Lys(UUU)) by the Escherichia coli anticodon nuclease PrrC (EcoPrrC) underlies a host antiviral response to phage T4 infection that is ultimately thwarted by a virus-encoded RNA repair system. PrrC homologs are prevalent in other bacteria, but their activities and substrates are not defined. We find that induced expression of EcoPrrC is toxic in Saccharomyces cerevisiae and E. coli, whereas the Neisseria meningitidis PrrC (NmePrrC) is not. PrrCs consist of an N-terminal NTPase module and a C-terminal nuclease module. Domain swaps identified the EcoPrrC nuclease domain as decisive for toxicity when linked to either the Eco or Nme NTPase. Indeed, a single arginine-to-tryptophan change in the NmePrrC nuclease domain (R316W) educed a gain-of-function and rendered NmePrrC toxic to yeast, with genetic evidence for tRNA(Lys(UUU)) being the relevant target. The reciprocal Trp-to-Arg change in EcoPrrC (W335R) abolished its toxicity. Further mutagenesis of the EcoPrrC nuclease domain highlighted an ensemble of 15 essential residues and distinguished between hypomorphic alleles and potential nuclease-nulls. We report that the RNA repair phase of the bacterial virus-host dynamic is also portable to yeast, where coexpression of the T4 enzymes Pnkp and Rnl1 ameliorated the toxicity of NmePrrC-R316W. Plant tRNA ligase AtRNL also countered NmePrrC-R316W toxicity, in a manner that depended on AtRNL's 5'-kinase and ligase functions.


Assuntos
Proteínas de Escherichia coli/química , Neisseria meningitidis/enzimologia , RNA de Transferência/química , Ribonucleases/química , Sequência de Aminoácidos , Substituição de Aminoácidos , Arginina/química , Arginina/genética , Proteínas de Escherichia coli/genética , Dosagem de Genes , Dados de Sequência Molecular , Estrutura Terciária de Proteína , RNA de Transferência/genética , Ribonucleases/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Triptofano/química , Triptofano/genética , Uridina/química
15.
J Biol Chem ; 286(35): 30253-30257, 2011 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-21757685

RESUMO

RtcB enzymes are novel RNA ligases that join 2',3'-cyclic phosphate and 5'-OH ends. The phylogenetic distribution of RtcB points to its candidacy as a tRNA splicing/repair enzyme. Here we show that Escherichia coli RtcB is competent and sufficient for tRNA splicing in vivo by virtue of its ability to complement growth of yeast cells that lack the endogenous "healing/sealing-type" tRNA ligase Trl1. RtcB also protects yeast trl1Δ cells against a fungal ribotoxin that incises the anticodon loop of cellular tRNAs. Moreover, RtcB can replace Trl1 as the catalyst of HAC1 mRNA splicing during the unfolded protein response. Thus, RtcB is a bona fide RNA repair enzyme with broad physiological actions. Biochemical analysis of RtcB highlights the uniqueness of its active site and catalytic mechanism. Our findings draw attention to tRNA ligase as a promising drug target.


Assuntos
Aminoacil-tRNA Sintetases/química , Fatores de Transcrição de Zíper de Leucina Básica/química , Proteínas de Escherichia coli/química , RNA Ligase (ATP)/química , Splicing de RNA , RNA de Transferência/química , Proteínas Repressoras/química , Proteínas de Saccharomyces cerevisiae/química , Aminoacil-tRNA Sintetases/fisiologia , Anticódon , Sequência de Bases , Catálise , Domínio Catalítico , Reparo do DNA , Escherichia coli/enzimologia , Proteínas de Escherichia coli/fisiologia , Íntrons , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Saccharomyces cerevisiae/metabolismo
16.
Nucleic Acids Res ; 39(2): 687-700, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20855293

RESUMO

tRNA damage inflicted by the Escherichia coli anticodon nuclease PrrC (EcoPrrC) underlies an antiviral response to phage T4 infection. PrrC homologs are present in many bacterial proteomes, though their biological activities are uncharted. PrrCs consist of two domains: an N-terminal NTPase module related to the ABC family and a distinctive C-terminal ribonuclease module. In this article, we report that the expression of EcoPrrC in budding yeast is fungicidal, signifying that PrrC is toxic in a eukaryon in the absence of other bacterial or viral proteins. Whereas Streptococcus PrrC is also toxic in yeast, Neisseria and Xanthomonas PrrCs are not. Via analysis of the effects of 118 mutations on EcoPrrC toxicity in yeast, we identified 22 essential residues in the NTPase domain and 11 in the nuclease domain. Overexpressing PrrCs with mutations in the NTPase active site ameliorated the toxicity of wild-type EcoPrrC. Our findings support a model in which EcoPrrC toxicity is contingent on head-to-tail dimerization of the NTPase domains to form two composite NTP phosphohydrolase sites. Comparisons of EcoPrrC activity in a variety of yeast genetic backgrounds, and the rescuing effects of tRNA overexpression, implicate tRNA(Lys(UUU)) as a target of EcoPrrC toxicity in yeast.


Assuntos
Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Ribonucleases/química , Ribonucleases/metabolismo , Alanina/genética , Sequência de Aminoácidos , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Proteínas de Escherichia coli/genética , Dados de Sequência Molecular , Mutagênese , Estrutura Terciária de Proteína , RNA de Transferência/química , RNA de Transferência de Lisina/metabolismo , Ribonucleases/genética , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
17.
RNA ; 15(6): 1036-44, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19383764

RESUMO

tRNA anticodon damage inflicted by secreted ribotoxins such as Kluyveromyces lactis gamma-toxin and bacterial colicins underlies a rudimentary innate immune system that distinguishes self from nonself species. The intracellular expression of gamma-toxin (a 232-amino acid polypeptide) arrests the growth of Saccharomyces cerevisiae by incising a single RNA phosphodiester 3' of the modified wobble base of tRNA(Glu). Fungal gamma-toxin bears no primary structure similarity to any known nuclease and has no plausible homologs in the protein database. To gain insight to gamma-toxin's mechanism, we tested the effects of alanine mutations at 62 basic, acidic, and polar amino acids on ribotoxin activity in vivo. We thereby identified 22 essential residues, including 10 lysines, seven arginines, three glutamates, one cysteine, and one histidine (His209, the only histidine present in gamma-toxin). Structure-activity relations were gleaned from the effects of 44 conservative substitutions. Recombinant tag-free gamma-toxin, a monomeric protein, incised an oligonucleotide corresponding to the anticodon stem-loop of tRNA(Glu) at a single phosphodiester 3' of the wobble uridine. The anticodon nuclease was metal independent. RNA cleavage was abolished by ribose 2'-H and 2'-F modifications of the wobble uridine. Mutating His209 to alanine, glutamine, or asparagine abolished nuclease activity. We propose that gamma-toxin catalyzes an RNase A-like transesterification reaction that relies on His209 and a second nonhistidine side chain as general acid-base catalysts.


Assuntos
Fatores Matadores de Levedura/química , Kluyveromyces/enzimologia , RNA de Transferência/metabolismo , Ribonucleases/química , Sequência de Aminoácidos , Arginina/química , Arginina/metabolismo , Ácido Glutâmico/química , Ácido Glutâmico/metabolismo , Histidina/química , Histidina/metabolismo , Fatores Matadores de Levedura/metabolismo , Lisina/química , Lisina/metabolismo , Dados de Sequência Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleases/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
18.
FEBS Lett ; 582(6): 855-60, 2008 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-18279676

RESUMO

The yeast gene MCR1 encodes two isoforms of the mitochondrial NADH-cytochrome b5 reductase. One form is embedded in the outer membrane whereas the other is located in the intermembrane space (IMS). In the present work we investigated the biogenesis of the outer membrane form. We demonstrate that while the IMS form crosses the outer membrane via the translocase of the outer mitochondrial membrane (TOM) complex, the other form is integrated into the outer membrane by a process that does not require any of the known import components at the outer membrane. Thus, the import pathways of the two forms diverge in a stage before the encounter with the TOM complex and their mechanism of biogenesis represents a unique example how to achieve dual localization within one organelle.


Assuntos
Proteínas de Transporte/metabolismo , Citocromo-B(5) Redutase/metabolismo , Membranas Mitocondriais/enzimologia , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Sequência de Aminoácidos , Proteínas de Transporte/genética , Citocromo-B(5) Redutase/análise , Citocromo-B(5) Redutase/genética , Isoenzimas/genética , Isoenzimas/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Proteínas de Transporte da Membrana Mitocondrial , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , Transporte Proteico , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/análise , Proteínas de Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...